Skip to main content
Log in

Secretion of human interferon-β 1b by recombinant Lactococcus lactis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Interferon-β has anti-viral, anti-proliferation and multifunctional immunomodulatory activities and shows promising clinical effects for treatment of inflammatory disorders. The recombinant human interferon-β (huIFN-β) 1b was expressed in the food-grade lactic acid bacterium, Lactococcus lactis, using a nisin-controlled gene expression system. huIFN-β production from recombinant strains (with and without LEISSTCDA propeptide) was approximately 21 and 7 μg l−1, respectively. Moreover, 95% (former strain) and 88% (latter strain) of total recombinant proteins were secreted into the culture medium. The biological activities of huIFN-β from recombinant strains revealed similar antiviral activities of 107 I.U. mg−1. These results demonstrate the potential application of recombinant strains as a food grade vehicle to deliver bioactive huIFN-β in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ballou CE (1990) Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol 185:440–470

    Article  PubMed  CAS  Google Scholar 

  • Bermudez-Humaran LG, Langella P, Cortes-Perez NG et al (2003) Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production. Infect Immun 71:1887–1896

    Article  PubMed  CAS  Google Scholar 

  • Bogdan C, Mattner J, Schleicher U (2004) The role of type I interferons in non-viral infections. Immunol Rev 202:33–48

    Article  PubMed  CAS  Google Scholar 

  • Braat H, Rottiers P, Hommes DW et al (2006) A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol 4:754–759

    Article  PubMed  CAS  Google Scholar 

  • Drouault S, Corthier G, Ehrlich SD, Renault P (1999) Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Appl Environ Microbiol 65:4881–4886

    PubMed  CAS  Google Scholar 

  • Eichenbaum Z, Federle MJ, Marra D et al (1998) Use of the lactococcal nisA promoter to regulate gene expression in gram-positive bacteria: comparison of induction level and promoter strength. Appl Environ Microbiol 64:2763–2769

    PubMed  CAS  Google Scholar 

  • Enouf V, Langella P, Commissaire J, Cohen J, Corthier G (2001) Bovine rotavirus nonstructural protein 4 produced by Lactococcus lactis is antigenic and immunogenic. Appl Environ Microbiol 67:1423–1428

    Article  PubMed  CAS  Google Scholar 

  • Familletti PC, Rubinstein S, Pestka S (1981) A convenient and rapid cytopathic effect inhibition assay for interferon. Methods Enzymol 78:387–394

    Article  PubMed  CAS  Google Scholar 

  • Freitas DA, Leclerc S, Miyoshi A et al (2005) Secretion of Streptomyces tendae antifungal protein 1 by Lactococcus lactis. Braz J Med Biol Res 38:1585–1592

    Article  PubMed  CAS  Google Scholar 

  • Geoffroy MC, Guyard C, Quatannens B et al (2000) Use of green fluorescent protein to tag lactic acid bacterium strains under development as live vaccine vectors. Appl Environ Microbiol 66:383–391

    PubMed  CAS  Google Scholar 

  • Holo H, Nes IF (1989) High-frequency transformation by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123

    PubMed  CAS  Google Scholar 

  • Huyghebaert N, Vermeire A, Neirynck S et al (2005) Evaluation of extrusion/spheronisation, layering and compaction for the preparation of an oral, multi-particulate formulation of viable, hIL-10 producing Lactococcus lactis. Eur J Pharm Biopharm 59:9–15

    Article  PubMed  CAS  Google Scholar 

  • Katakura K, Lee J, Rachmilewitz D, Li G, Eckmann L, Raz E (2005) Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. J Clin Invest 115:695–702

    PubMed  CAS  Google Scholar 

  • Kucharzik T, Maaser C, Lugering A et al (2006) Recent understanding of IBD pathogenesis: implications for future therapies. Inflamm Bowel Dis 12:1068–1083

    Article  PubMed  Google Scholar 

  • Le Loir Y, Gruss A, Ehrlich SD, Langella P (1998) A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J Bacteriol 180:1895–1903

    PubMed  CAS  Google Scholar 

  • Le Loir Y, Azevedo V, Oliveira SC et al (2005) Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Fact 4:2

    Article  PubMed  CAS  Google Scholar 

  • Mark DF, Lu SD, Creasey AA, Yamamoto R, Lin LS (1984) Site-specific mutagenesis of the human fibroblast interferon gene. Proc Natl Acad Sci U S A 81:5662–5666

    Article  PubMed  CAS  Google Scholar 

  • Musch E, Andus T, Kruis W et al (2005) Interferon-beta-1a for the treatment of steroid-refractory ulcerative colitis: a randomized, double-blind, placebo-controlled trial. Clin Gastroenterol Hepatol 3:581–586

    Article  PubMed  CAS  Google Scholar 

  • Musch E, Andus T, Malek M, Chrissafidou A, Schulz M (2007) Successful treatment of steroid refractory active ulcerative colitis with natural interferon-beta–an open long-term trial. Z Gastroenterol 45:1235–1240

    Article  PubMed  CAS  Google Scholar 

  • Nikolaus S, Rutgeerts P, Fedorak R et al (2003) Interferon beta-1a in ulcerative colitis: a placebo controlled, randomised, dose escalating study. Gut 52:1286–1290

    Article  PubMed  CAS  Google Scholar 

  • Piard JC, Hautefort I, Fischetti VA et al (1997) Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria. J Bacteriol 179:3068–3072

    PubMed  CAS  Google Scholar 

  • Platteeuw C, van Alen-Boerrigter I, van Schalkwijk S, de Vos WM (1996) Food-grade cloning and expression system for Lactococcus lactis. Appl Environ Microbiol 62:1008–1013

    PubMed  CAS  Google Scholar 

  • Rudick RA, Ransohoff RM, Peppler R et al (1996) Interferon beta induces interleukin-10 expression: relevance to multiple sclerosis. Ann Neurol 40:618–627

    Article  PubMed  CAS  Google Scholar 

  • Sartor RB (2006) Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol 3:390–407

    Article  PubMed  CAS  Google Scholar 

  • Schotte L, Steidler L, Vandekerckhove J, Remaut E (2000) Secretion of biologically active murine interleukin-10 by Lactococcus lactis. Enzyme Microb Technol 27:761–765

    Article  PubMed  CAS  Google Scholar 

  • Sedmak JJ, Grossberg SE (1977) Stabilization of interferons. Tex Rep Biol Med 35:198–204

    PubMed  CAS  Google Scholar 

  • Sedmak JJ, Jameson P, Grossberg SE (1978) Thermal and vortical stability of purified human fibroblast interferon. Adv Exp Med Biol 110:133–152

    PubMed  CAS  Google Scholar 

  • Skoko N, Argamante B, Grujicic NK et al (2003) Expression and characterization of human interferon-beta1 in the methylotrophic yeast Pichia pastoris. Biotechnol Appl Biochem 38:257–265

    Article  PubMed  CAS  Google Scholar 

  • Steidler L (2002) In situ delivery of cytokines by genetically engineered Lactococcus lactis. Antonie Van Leeuwenhoek 82:323–331

    Article  PubMed  CAS  Google Scholar 

  • Steidler L, Neirynck S (2003) In situ delivery of therapeutic proteins by recombinant Lactococcus lactis. J. Microbiol 41:63–72

    CAS  Google Scholar 

  • Steidler L, Wells JM, Raeymaekers A et al (1995) Secretion of biologically active murine interleukin-2 by Lactococcus lactis subsp. lactis. Appl Environ Microbiol 61:1627–1629

    PubMed  CAS  Google Scholar 

  • Steidler L, Robinson K, Chamberlain L et al (1998) Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Infect Immun 66:3183–3189

    PubMed  CAS  Google Scholar 

  • Wirtz S, Neurath MF (2005) Illuminating the role of type I IFNs in colitis. J Clin Invest 115:586–588

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Deriaud E, Jiao X et al (2007) Type I interferons protect neonates from acute inflammation through interleukin 10-producing B cells. J Exp Med 204:1107–1118

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant (30470399) from the National Natural Science Foundation of China and a grant (2005BS02015) from the Foundation for Encouraging Excellent Young Scientists of Shandong Province. We also thank Shandong Quangang pharmaceutical company for their kindly help for analysis of the biological activity of recombinant huIFN-β 1b.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Chen or Peng George Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuang, Z., Wu, Zg., Chen, M. et al. Secretion of human interferon-β 1b by recombinant Lactococcus lactis . Biotechnol Lett 30, 1819–1823 (2008). https://doi.org/10.1007/s10529-008-9761-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-008-9761-y

Keywords

Navigation