Skip to main content
Log in

Multipotency and growth characteristic of periosteum-derived progenitor cells for chondrogenic, osteogenic, and adipogenic differentiation

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The mesengenic multipotency of cryopreserved periosteum-derived progenitor cells (PDPCs) for chondrogenesis, osteogenesis and adipogenesis was investigated. Differentiation was verified using RT-PCR and histological analysis. For characterization, FACS analysis was performed with specific surface markers of mesenchymal stem cells (MSCs). Among PDPCs, unsorted periosteum-derived cells (PDCs) and dermal fibroblasts, the most distinct characteristics were found to be CD9, CD105, and CD166. In addition, these markers in PDPCs were continuously maintained until passage 15. We developed a rapid method for the isolation of PDPCs that can differentiate into mesodermal lineages and provide enough cells in a short period of time for allogeneic cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bruder SP, Ricalton NS, Boynton RE, Connolly TJ, Jaiswal N, Zaia J, Barry FP (1998) Mesenchymal stem cell surface antigen SB-10 corresponds to activated leukocyte cell adhesion molecule and is involved in osteogenic differentiation. J Bone Miner Res 13:655–663

    Article  PubMed  CAS  Google Scholar 

  • Choi YS, Lim SM, Shin HJ, Lee CW, Kim SL, Kim DI (2007) Chondrogenesis of human periosteum-derived progenitor cells in atelocollagen. Biotechnol Lett 29:323–329

    Article  PubMed  CAS  Google Scholar 

  • de Bari C, Dell’Accio F, Luyten FP (2001) Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum 44:85–95

    Article  PubMed  Google Scholar 

  • de Bari C, Dell’Accio F, Vanlauwe J, Eyckmans J, Khan AM, Archer CW, Jones EA, McGonagle D, Mitsiadis TA, Pitzalis C, Luyten FP (2006) Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum 54:1209–1221

    Article  PubMed  Google Scholar 

  • Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28:875–884

    Article  PubMed  CAS  Google Scholar 

  • Devine SM, Cobbs C, Jennings M, Bartholomew A, Hofman R (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 101:2999–3001

    Article  PubMed  CAS  Google Scholar 

  • Fickert S, Fiedler J, Brenner RE (2003) Identification, quantification and isolation of mesenchymal progenitor cells from osteoarthritic synovium by fluorescence automated cell sorting. Osteoarthr Cartil 11:790–800

    Article  PubMed  CAS  Google Scholar 

  • Fickert S, Fiedler J, Brenner RE (2004) Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res Ther 6: R422–R432

    Article  PubMed  CAS  Google Scholar 

  • Gang E J, Hong SH, Jeong JA, Hwang SH, Kim SW, Yang IH, Ahn C, Han H, Kim H (2004) In vitro mesengenic potential of human umbilical cord blood-derived mesenchymal stem cells. Biochem Biophys Res Commun 321:102–108

    Article  PubMed  CAS  Google Scholar 

  • Gimble JM, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362–369

    Article  PubMed  Google Scholar 

  • Gurevitch O, Prigozhina TB, Pugatsch T, Slavin S (1999) Transplantation of allogeneic or xenogeneic bone marrow within the donor stromal microenvironment. Transplantation 68:1362–1368

    Article  PubMed  CAS  Google Scholar 

  • Hisha H, Nishino T, Kawamura M, Adachi S, Ikehara S (1995) Successful bone marrow transplantation by bone grafts in chimeric-resistant combination. Exp Hematol 23:347–352

    PubMed  CAS  Google Scholar 

  • Hui JHP, Li L, Teo YH, Ouyang HW, Lee EH (2005) Comparative study of the ability of mesenchymal stem cells derived from bone marrow, periosteum, and adipose tissue in treatment of partial growth arrest in rabbit. Tissue Eng 11:904–912

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Fitzsimmons JS, Sanyal A, Mello MA, Mukherhee N, O’Driscoll SW (2001) Localization of chondrocyte precursors in periosteum. Osteoarthr Cartil 9:215–223

    Article  PubMed  CAS  Google Scholar 

  • Javzon EH, Beggs KJ, Flake AW (2004) Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 32:414–425

    Article  Google Scholar 

  • Kassis I, Zangi L, Rivkin R, Levdansky L, Samuel S, Marx G, Gorodetsky R (2006) Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transplant 37:967–976

    Article  PubMed  CAS  Google Scholar 

  • Lim SM, Choi YS, Shin HC, Lee CW, Kim DI (2005) Isolation of human periosteum-derived progenitor cells using immunophenotypes for chondrogenesis. Biotechnol Lett 27:607–611

    Article  PubMed  CAS  Google Scholar 

  • Majumdar MK, Banks V, Peluso DP, Morris EA (2000) Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotential stromal cells. J Cell Physiol 185:98–106

    Article  PubMed  CAS  Google Scholar 

  • Nakase T, Nakahara H, Iwasaki M, Kimura T, Kimata K, Watanabe K, Caplan AI, Ono K (1993) Clonal analysis for developmental potential of chick periosteum-derived cells: agar gel culture system. Biochem Biophys Res Commun 195:1422–1428

    Article  PubMed  CAS  Google Scholar 

  • O’Driscoll SW (1999) Articular cartilage regeneration using periosteum. Clin Orthop 367S:186–203

    Google Scholar 

  • O’Driscoll SW, Fitzsimmons JS (2001) The role of periosteum in cartilage repair. Clin Orthop 391S:S190–S207

    Google Scholar 

  • Park J, Gelse K, Frank S, von der Mark K, Aigner T, Schneider H (2006) Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. J Gene Med 8:112–125

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem vells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52:2521–2529

    Article  PubMed  Google Scholar 

  • Siebold R, Lichtenberg S, Habermeyer P (2003) Combination of microfracture and periostal-flap for the treatment of focal full thickness articular cartilage lesions of the shoulder: a prospective study. Knee Surg Sports Traumatol Arthrosc 11:183–189

    PubMed  CAS  Google Scholar 

  • Simon TM, Van Sickle DC, Kunishima DH, Jackson DW (2003) Cambium cell stimulation from surgical release of the periosteum. J Orthop Res 21:470–480

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Science and Engineering Foundation (KOSEF R01-2005-000-10927-0) and also by Boryung Pharmaceutical Co. Ltd., Korea

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Il Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, YS., Noh, SE., Lim, SM. et al. Multipotency and growth characteristic of periosteum-derived progenitor cells for chondrogenic, osteogenic, and adipogenic differentiation. Biotechnol Lett 30, 593–601 (2008). https://doi.org/10.1007/s10529-007-9584-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-007-9584-2

Keywords

Navigation