Skip to main content
Log in

MicroRNA-363-3p Inhibits the Expression of Renal Fibrosis Markers in TGF-β1-Treated HK-2 Cells by Targeting TGF-β2

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

This study aimed to explore the role of miR-363-3p in renal fibrosis (RF) in vitro. HK-2 cells were treated with transforming growth factor (TGF)-β1 for 72 h to establish an in vitro model of RF. Subsequently, western blot analysis and reverse transcription-quantitative PCR were used to detect the protein and mRNA expression levels of RF markers in TGF-β1-treated HK-2 cells, respectively. The results showed that the protein and mRNA expression levels of TGF-β2, α-smooth muscle actin (SMA), fibronectin, vimentin, collagen II and N-cadherin were increased, while the protein and mRNA expression levels of E-cadherin were decreased in TGF-β1-treated HK-2 cells. The level of miR-363-3p was significantly decreased in TGF-β1-treated HK-2 cells. TargetScan indicated that TGF-β2 was a direct target gene for miR-363-3p, which was further verified using dual luciferase reporter gene assays. Further analyses revealed that the increased protein and mRNA expression levels of TGF-β2, α-SMA, fibronectin, vimentin, collagen II, N-cadherin, increased phosphorylated-Smad3 protein level, and decreased E-cadherin protein and mRNA expression in TGF-β1-treated HK-2 cells were significantly reversed by miR-363-3p mimics. However, all the effects were suppressed by a TGF-β2-plasmid. The results suggested that miR-363-3p plays a protective role in RF by regulating the TGF-β2/Smad3 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adhikary A, Chakraborty S, Mazumdar M et al (2014) Inhibition of epithelial to mesenchymal transition by E-cadherin up-regulation via repression of slug transcription and inhibition of E-cadherin degradation: dual role of scaffold /matrix attachment region-binding protein 1 (SMAR1) in breast cancer cells. J Biol Chem 289:25431–25444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Berchtold L, Friedli I, Vallée JP et al (2017) Diagnosis and assessment of renal fibrosis: the state of the art. Swiss Med Wkly 147:w14442

    PubMed  Google Scholar 

  • Bian WG, Zhou XN, Song S et al (2019) Reduced miR-363-3p expression in non-small cell lung cancer is associated with gemcitabine resistance via targeting of CUL4A. Eur Rev Med Pharmacol Sci 23:649–659

    PubMed  Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  CAS  PubMed  Google Scholar 

  • Carew RM, Wang B, Kantharidis P (2012) The role of EMT in renal fibrosis. Cell Tissue Res 347:103–116

    Article  CAS  PubMed  Google Scholar 

  • Chen B (2019) The miRNA-184 drives renal fibrosis by targeting HIF1AN in vitro and in vivo. Int Urol Nephrol 51:543–550

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Lu X, Wu B et al (2015) MicroRNA 363 mediated positive regulation of c-myc translation affect prostate cancer development and progress. Neoplasma 62:191–198

    Article  CAS  PubMed  Google Scholar 

  • Chen TK, Knicely DH, Grams ME (2019) Chronic kidney disease diagnosis and management: a review. JAMA 322:1294–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung AC, Lan HY (2015) MicroRNAs in renal fibrosis. Front Physiol 6:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Cruz-Solbes AS, Youker K (2017) Epithelial to mesenchymal transition (EMT) and endothelial to mesenchymaltransition (EndMT): role and implications in kidney fibrosis. Results Probl Cell Differ 60:345–372

    Article  CAS  PubMed  Google Scholar 

  • Da C, Liu Y, Zhan Y et al (2016) Nobiletin inhibits epithelial-mesenchymal transition of human non-small cell lung cancer cells by antagonizing the TGF-β1/Smad3 signaling pathway. Oncol Rep 35:2767–2774

    Article  CAS  PubMed  Google Scholar 

  • Ding H, Xu Y, Jiang N (2020) Upregulation of miR-101a suppresses chronic renal fibrosis by regulating KDM3A via blockade of the YAP-TGF-β-smad signaling pathway. Mol Ther Nucleic Acids 19:1276–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffield JS (2014) Cellular and molecular mechanisms in kidney fibrosis. J Clin Investig 2124:2299–2306

    Article  Google Scholar 

  • Georgieva B, Milev I, Minkov I et al (2012) Characterization of the uterine leiomyoma microRNAome by deep sequencing. Genomics 99:275–281

    Article  CAS  PubMed  Google Scholar 

  • Hammond SM (2015) An overview of microRNAs. Adv Drug Deliv Rev 87:3–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han WQ, Zhu Q, Hu JP et al (1833) Hypoxia-inducible Factor prolyl-hydroxylase-2 mediates transforming growth factor beta 1-induced epithelial-mesenchymal transition in renal tubular cells. Biochim Biophys Acta 1454–1462:2013

    Google Scholar 

  • Hanna A, Frangogiannis NG (2019) The role of the TGF-β superfamily in myocardial infarction. Front Cardiovasc Med 6:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  PubMed  Google Scholar 

  • He W, Zhuang J, Zhao ZG et al (2018) miR-328 prevents renal fibrogenesis by directly targeting TGF-β2. Bratisl Lek Listy 119:434–440

    CAS  PubMed  Google Scholar 

  • Hosseinahli N, Aghapour M, Duijf PHG et al (2018) Treating cancer with microRNA replacement therapy: a literature review. J Cell Physiol 233:5574–5588

    Article  CAS  PubMed  Google Scholar 

  • Hu F, Min J, Cao X et al (2016) MiR-363-3p inhibits the epithelial-to-mesenchymal transition and suppresses metastasis in colorectal cancer by targeting Sox4. Biochem Biophys Res Commun 474:35–42

    Article  CAS  PubMed  Google Scholar 

  • Islam MS, Ciavattini A, Petraglia F et al (2018) Extracellular matrix in uterine leiomyoma pathogenesis: a potential target for future therapeutics. Hum Reprod Update 24:59–85

    Article  CAS  PubMed  Google Scholar 

  • Jiang CF, Cao Y, Lei T et al (2018) MicroRNA-363–3p inhibits cell growth and invasion of non-small cell lung cancer by targeting HMGA2. Mol Med Rep 17:2712–2718

    CAS  PubMed  Google Scholar 

  • Jiang ZH, Tang YZ, Song HN et al (2020) miRNA-342 suppresses renal interstitial fibrosis in diabetic nephropathy by targeting SOX6. Int J Mol Med 45:45–52

    CAS  PubMed  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Investig 119:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufhold S, Bonavida B (2014) Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention. J Exp Clin Cancer Res 33:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Klinkhammer BM, Goldschmeding R, Floege J et al (2017) Treatment of renal fibrosis-turning challenges into opportunities. Adv Chronic Kidney Dis 24:117–129

    Article  PubMed  Google Scholar 

  • Lan HY (2011) Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int J Biol Sci 7:1056–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Guan X, Sun Y et al (2014) miR-92a family and their target genes in tumorigenesis and metastasis. Exp Cell Res 323:1–6

    Article  CAS  PubMed  Google Scholar 

  • Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15:1–12

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-Ct Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Loboda A, Sobczak M, Jozkowicz A et al (2016) TGF-β1/Smads and miR-21 in renal fibrosis and inflammation. Mediators Inflamm 2016:8319283

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Hernández FJ, López-Novoa JM (2011) Role of TGF-β in chronic kidney disease: an integration of tubular glomerular and vascular effects. Cell Tissue Res 347:141–154

    Article  PubMed  Google Scholar 

  • Lv W, Fan F, Wang Y et al (2018) Therapeutic potential of microRNAs for the treatment of renal fibrosis and CKD. Physiol Genomics 50:20–34

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Li Y, Yao L et al (2017) Analysis of microRNA expression profiling involved in MC-LR-induced cytotoxicity by high-throughput sequencing. Toxins (Basel) 9:E23

    Article  Google Scholar 

  • Meng XM, Chung AC, Lan HY (2013) Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clin Sci (Lond) 124:243–254

    Article  CAS  Google Scholar 

  • Meng XM, Tang PM, Li J et al (2015) TGF-β/Smad signaling in renal fibrosis. Front Physiol 6:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng XM, Nikolic-Paterson DJ, Lan HY (2016a) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338

    Article  CAS  PubMed  Google Scholar 

  • Meng XM, Nikolic-Paterson DJ, Lan HY (2016b) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338

    Article  CAS  PubMed  Google Scholar 

  • Muoz-Félix JM, González-Núez M, Martínez-Salgado C et al (2015) TGF- β /BMP proteins as therapeutic targets in renal fibrosis. Where have we arrived after 25 years of trials and tribulations. Pharmacol Ther 156:44–58

    Article  Google Scholar 

  • Qiao J, Lee S, Paul P et al (2013) MiR-335 and miR-363 regulation of neuroblastoma tumorigenesis and metastasis. Surgery 154:226–233

    Article  PubMed  Google Scholar 

  • Rapado-González Ó, Majem B, Muinelo-Romay L et al (2018) Human salivary microRNAs in Cancer. J Cancer 9:638–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts AB, McCune BK, Sporn MB (1992) TGF-beta: regulation of extracellular matrix. Kidney Int 41:557–559

    Article  CAS  PubMed  Google Scholar 

  • Soifer HS, Rossi JJ, Saetrom P (2017) MicroRNAs in disease and potential therapeutic applications. Mol Ther 15:2070–2079

    Article  Google Scholar 

  • Song B, Yan J, Liu C et al (2015) Tumor suppressor role of miR-363-3p in gastric cancer. Med Sci Monit 21:4074–4080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonja D, Peter B (2019) Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med 65:16–36

    Article  Google Scholar 

  • Sun Q, Zhang J, Cao W et al (2013) Dysregulated miR-363 affects head and neck cancer invasion and metastasis by targeting podoplanin. Int J Biochem Cell Biol 45:513–520

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Ma Y, Chen F et al (2018) miR-133b and miR-199b knockdown attenuate TGF-β1-induced epithelial to mesenchymal transition and renal fibrosis by targeting SIRT1 in diabetic nephropathy. Eur J Pharmacol 837:96–104

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Wang J, Liu J et al (2019) Niban protein regulates apoptosis in HK-2 cells via caspase-dependent pathway. Ren Fail 41:455–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trionfini P, Benigni A, Remuzzi G (2014) MicroRNAs in kidney physiology and disease. Nat Rev Nephrol 11:23–33

    Article  PubMed  Google Scholar 

  • Tsuji S, Kawasaki Y, Furukawa S et al (2014) The miR-363-GATA6-Lgr5 pathway is critical for colorectal tumourigenesis. Nat Commun 5:3150

    Article  PubMed  Google Scholar 

  • Vishnoi A, Rani S (2017) MiRNA biogenesis and regulation of diseases: an overview. Methods Mol Biol 1509:1–10

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Koh P, Winbanks C et al (2011) miR-200a prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes 60:280–287

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Jha JC, Hagiwara S et al (2014) Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney Int 85:352–361

    Article  CAS  PubMed  Google Scholar 

  • Yoshinaga T, Uwabe K, Naito S et al (2016) AM251 suppresses epithelial-mesenchymal transition of renal tubular epithelial cells. PLoS ONE 11:e0167848

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu L, Border WA, Huang Y et al (2003) TGF-beta isoforms in renal fibrogenesis. Kidney Int 64:844–856

    Article  CAS  PubMed  Google Scholar 

  • Zeisberg M, Kalluri R (2013) Cellular mechanisms of tissue fibrosis 1 common and organ-specific mechanisms associated with tissue fibrosis. AJP: Cell Physiol 304:C216–C225

    CAS  Google Scholar 

  • Zhang R, Li Y, Dong X et al (2014) MiR-363 sensitizes cisplatin-induced apoptosis targeting in Mcl-1 in breast cancer. Med Oncol 31:347

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Chen J, Zhang D et al (2018) microRNA expression profiles of scar and normal tissue from patients with posterior urethral stricture caused by pelvic fracture urethral distraction defects. Int J Mol Med 41:2733–2743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong X, Chung ACK, Chen HY et al (2013) MiR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56:663–674

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Liu Y (2016) Renal fibrosis in 2015: understanding the mechanisms of kidney fibrosis. Nat Rev Nephrol 12:68–70

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Huang G, Zhao Y et al (2014) MicroRNA-363-mediated downregulation of S1PR1 suppresses the proliferation of hepatocellular carcinoma cells. Cell Signal 26:1347–1354

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglan Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Li, Y., Cao, R. et al. MicroRNA-363-3p Inhibits the Expression of Renal Fibrosis Markers in TGF-β1-Treated HK-2 Cells by Targeting TGF-β2. Biochem Genet 59, 1033–1048 (2021). https://doi.org/10.1007/s10528-021-10044-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-021-10044-z

Keywords

Navigation