Skip to main content
Log in

Genetic Diversity and Differentiation in Hedychium spicatum, a Valuable Medicinal Plant of Indian Himalaya

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Hedychium spicatum, a perennial rhizomatous medicinal plant distributed in subtropical and temperate parts, is considered nearly endemic to the Himalayan region.In this study allozyme markers were utilized to assess genetic variations and relationships among 12 distinct populations of this species from the West Himalaya of India. A high level of genetic diversity was found among the populations. Of the 13 loci generated using eight enzymes, 12 (92%) were polymorphic. F-statistics suggested a prevalence of a high heterozygote excess among populations (F IS = –0.51). Gene flow estimates and geographic distances between populations did not correlate significantly (r = –0.0258, P < 0.3550). The excess heterozygosity may be attributed to high pollinator mobility and inbreeding coefficient within the subpopulation, relative to the total F IS value. High frequencies of several alleles at different loci probably reflect the breeding pattern, as the species propagates clonally as well as through seeds. We also discuss conservation implications for the target species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bisht GS, Awasthi AK, Dhole TN (2006) Antimicrobial activity of Hedychium spicatum. Fitoter 77:240–242

    Article  CAS  Google Scholar 

  • Bohonak AJ (2002) Antimicrobial activity of Hedychium spicatum. J Hered 93:153–154

    Article  PubMed  CAS  Google Scholar 

  • Bouza N, Caujape CJ, Gonza lez-Perez MA, Batista F, Sosa PA (2002) Population structure and genetic diversity of two endangered endemic species of the Canarian laurel forest: Dorycnium spectabile (Fabaceae) and Isoplexis chalcantha (Scrophulariaceae). Int J Plant Sci 163:619–630

    Article  Google Scholar 

  • Chopra RN, Nayar SL, Chopra LC (1986) Glossary of Indian medicinal plants. CSIR, New Delhi, pp 130–131

    Google Scholar 

  • Eguiarte LE, Perez-Nasser N, Piñero D (1992) Genetic structure, out-crossing rate and heterosis in Astrocaryum mexicanum (tropical palm): implications for evolution and conservation. Heredity 69:217–228

    Article  CAS  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Eco Syst 24:217–242

    Article  Google Scholar 

  • Francisco-Ortega J, Santos-Guerra A, Kim SC, Crawford DJ (2000) Plant genetic diversity in the Canary Islands: a conservation perspective. Am J Bot 87:909–919

    Article  PubMed  CAS  Google Scholar 

  • Frankham R (1995) Conservation genetics. Ann Rev Genet 29:305–327

    Article  PubMed  CAS  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Gottlieb LD (1977) Electrophoretic evidence and plant systematics. Ann Mo Bot Gard

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer Associates, Sunderland, pp 43–63

    Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effect of life history traits on genetic diversity in plant species. Philos Trans Roy Soc Lond B (Biol Sci) 351:1291–1298

    Article  Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124

    Article  Google Scholar 

  • Huh MK, Chung SD, Huh HW (1998) Allozyme variation and population structure of Pyrola japonica in Korea. Bot Bull Acad Sin 39:107–112

    CAS  Google Scholar 

  • Joshi S, Chanotiya CS, Agarwal G, Prakesh O, Pant AK, Methela CS (2008) Terpenoide compositions and antioxidant and antimicrobial properties of the rhizome essential oil of different Hedychium species. Chem Biodivers 5:299–309

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    PubMed  CAS  Google Scholar 

  • Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Miller MP (1997) Tools for population genetic analyses (TFPGA) 1.3: a Windows program for the analysis of allozyme and molecular population genetic data. Distributed by author

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Rajora OP (1988) Allozymes for identification and differentiation of some Populus maximowiczii Henry clonal varieties. Biochem Syst Evol 16:635–640

    Article  CAS  Google Scholar 

  • Samant SS, Pant S (2006) Diversity, distribution pattern and conservation status of the plants used in liver disease ailments in Indian Himalayan region. J Mt Sci 3:28–47

    Article  Google Scholar 

  • Samant SS, Dhar U, Palni LMS (1998) Medicinal plants of Indian Himalaya: diversity, distribution potential values. Himavikas, Gyanodaya Prakashan, Nainital, publ. 13

  • Sampson JF, Hopper SD, Jones SH (1988) Genetic diversity and the conservation of Eucalyptus crucis maiden. Aust J Bot 36:447–460

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  PubMed  CAS  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and nonequilibrium populations. Evolution 47:264–279

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry, 2nd edn. Freeman, New York

    Google Scholar 

  • Soltis DE, Haufler CH, Darrow DC, Gastony GJ (1983) Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffer, and staining schedules. Am Fern J 73:9–27

    Article  Google Scholar 

  • Sosa PA (2001) Genes, poblaciones y especies. In: Martin-Esquivel J, Fernandez-Palacios JM (eds) Naturaleza de las Islas Canarias. Santa Cruz de Tenerife, Editorial Turquesa, Canary Islands, pp 151–155

    Google Scholar 

  • StatSoft Inc (1985) Statistica for Windows, release 6.0. StatSoft Inc., Tulsa, OK

    Google Scholar 

  • Sun M (1997) Genetic diversity in three colonizing orchards with contrasting mating systems. Am J Bot 84:224–232

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL, Olsen GJ (1990) Phylogeny reconstruction. In: Hillis DM, Moritz C (eds) Molecular systematics. Sinaur Associates, Sunderland

    Google Scholar 

  • Weir BS (1990) Genetic data analysis: methods for discrete population analysis. Sinauer Associates, Sunderland

    Google Scholar 

  • Wendel JF, Weeden NF (1989) Visualization and interpretation of plant isozymes. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides Press, Portland, pp 5–45

    Chapter  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, vol. 4: variability within and among natural populations. University of Chicago Press, Chicago

    Google Scholar 

  • Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1999) PopGene version 1.32. The user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. L. M. S. Palni, Director, GBPIHED, for providing the facilities and encouragement. Thanks are also due to Prof. Pedro Garcia, Universidad de Leon, Spain for the valuable input during experimental design and critical analysis of the data. UD thanks the National Academy of Sciences, India, and Hamdard University, New Delhi, for their support. Financial support from GBPIHED under Project 10 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indra D. Bhatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jugran, A., Bhatt, I.D., Rawat, S. et al. Genetic Diversity and Differentiation in Hedychium spicatum, a Valuable Medicinal Plant of Indian Himalaya. Biochem Genet 49, 806–818 (2011). https://doi.org/10.1007/s10528-011-9451-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-011-9451-7

Keywords

Navigation