Skip to main content
Log in

Adaptive Evolution of the First Extra Exon in the Murid Rodent Prolactin Gene Family

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The prolactin gene family in rodents consists of multiple members that coordinate the processes of reproduction and pregnancy. Some members of this family acquired one or two additional exons between exon 2 and exon 3 of the prototypical 5-exon, 4-intron structure, but the evolutionary importance of this insertion is unclear. Here, we focus on those members and survey this question by molecular evolutionary methods. Phylogenetic analysis shows that those members cluster into two distinct groups. Further analysis shows that the two groups of genes originated before the divergence of mouse and rat but after that of rodents from other mammals. We compared the d N/d S values for each branch of the gene tree but found no evidence to support positive selection for any branch. We found strong evidence, however, that one site (11E) of the 13 sites of the first extra exon underwent positive selection by the site-specific models of the maximum-likelihood method. Combining our molecular evolutionary analysis with other known functional evidence, we believe that the insertion of the extra exon implies some functional adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  • Bhattacharyya, S., Lin, J., and Linzer, D. I. H. (2002). Reactivation of a hematopoietic endocrine program of pregnancy contributes to recovery from thrombocytopenia. Mol. Endocrinol. 16:1386–1393.

    Article  PubMed  CAS  Google Scholar 

  • Bittorf, T., Jaster, R., Soares, M. J., Seiler, J., Brock, J., Friese, K., and Muller, H. (2000). Induction of erythroid proliferation and differentiation by a trophoblast-specific cytokine involves activation of the JAK/STAT pathway. J. Mol. Endocrinol. 25:253–262.

    Article  PubMed  CAS  Google Scholar 

  • Chien, Y. H., and Thompson, E. B. (1980). Genomic organization of the rat prolactin and growth hormone genes. Proc. Nat. Acad. Sci. 77:4583–4587.

    Article  PubMed  CAS  Google Scholar 

  • Conliffe, P. R., Farmerie, W. G., Charles, G. D., Buhi, W. C., Kelly, P. A., Simmen, R. C. M., and Shiverick, K. T. (1994). Expression and characterization of recombinant rat placental prolactin-like protein C. Mol. Cell. Endocrinol. 106:121–130.

    Article  PubMed  CAS  Google Scholar 

  • Connor, A. M., Waterhouse, P., Khokha, R., and Denhardt, D. T. (1989). Characterization of a mouse mitogen-regulated protein/proliferin gene and its promoter: A member of the growth hormone/prolactin gene superfamily. Biochimica. Biophysica. Acta 1009:75–82.

    CAS  Google Scholar 

  • Cooke, N. E., and Baxter, J. D. (1982). Structural analysis of the prolactin gene suggests a separate origin for its 5, end. Nature 297:603–606.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, N. E., Szpirer, C., and Levan, G. (1986). The related genes encoding growth hormone and prolactin have been dispersed to chromosomes 10 and 17 in rat. Endocrinology 119:2451–2454.

    PubMed  CAS  Google Scholar 

  • Dai, G., Liu, B., Szpirer, C., Levan, G., Kwok, S. C. M., and Soares, M. J. (1996). Prolactin-like protein-C variant: Complementary deoxyribonucleic acid, unique six exon gene structure, and trophoblast cell-specific expression. Endocrinology 137:5009–5019.

    Article  PubMed  CAS  Google Scholar 

  • Dai, G., Chapman, B. M., Wang, D., White, R. A., Preuett, B., and Soares, M. J. (1999). Prolactin-like protein A gene structure and chromosomal mapping. Mamm. Genome. 10:78–80.

    Article  PubMed  CAS  Google Scholar 

  • Forsyth, I. A., and Wallis, M. (2002). Growth hormone and prolactin: Molecular and functional evolution. J. Mammary Gland Biol. Neoplasia 7(3):291–312.

    Article  PubMed  Google Scholar 

  • Glazko, G. V., Koonin, E. V., and Rogozin, I. B. (2005). Molecular dating: Ape bones agree with chicken entrails. Trends Genet. 21:89–92.

    Article  PubMed  CAS  Google Scholar 

  • Grus, W. E., and Zhang, J. Z. (2004). Rapid turnover and species-specificity of vomeronasal pheromone receptor genes in mice and rats. Gene 340:303–312.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, I. T., Lee, Y. H., Moon, B. C., Ahn, K., Lee, S. W., and Chun, J. Y. (2000). Identification and characterization of a new member of the placental prolactin-like protein-C (PLP-C) subfamily, PLP-Cβ. Endocrinology 141(9):3343–3352.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, D., Volpert, O. V., Bouck, N., and Linzer, D. I. H. (1994). Stimulation and inhibition of angiogenesis by placental proliferin and proliferin-related protein. Science 266:1581–1584.

    Article  PubMed  CAS  Google Scholar 

  • Jackson-Grusby, L. I., Pravtcheva, D., Ruddle, F. H., and Linzer, D. I. H. (1988). Chromosomal mapping of the prolactin/growth hormone gene family in the mouse. Endocrinology 122:2464–2466.

    Article  Google Scholar 

  • Jacobs, L. L., and Pilbeam, D. (1980). Of mice and men: Fossil-based divergence dates and molecular “clocks.” J. Hum. Evol. 9:551–555.

    Article  Google Scholar 

  • Jeanmougin, F., Thompson, J. D., Gouy, M., Higgins, D. G., and Gibson, T. J. (1998). Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23:403–405.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., and Hedges, S. B. (1998). A molecular timescale for vertebrate evolution. Nature 392:917–920.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., Tamura, K., Jakobsen, I. B., and Nei, M. (2001). MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245.

    Article  PubMed  CAS  Google Scholar 

  • Li, P., and Bousquet, J. (1992). Relative-rate test for nucleotide substitutions between two lineages. Mol. Biol. Evol. 9:1185–1189.

    CAS  Google Scholar 

  • Li, Y., and Zhang, Y. P. (2006). Molecular evolution of prolactin gene family in rodents. Acta Genet. Sinica 33(7):590–597.

    Article  CAS  Google Scholar 

  • Lin, J., and Linzer, D. I. H. (1999). Induction of megakaryocyte differentiation by a novel pregnancy-specific hormone. J. Biol. Chem. 274:21485–21489.

    Article  PubMed  CAS  Google Scholar 

  • Nei, M., Xu, P., and Glazko, G. (2001). Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. Proc. Nat. Acad. Sci. 98:2497–2502.

    Article  PubMed  CAS  Google Scholar 

  • O’Huigin, C., and W.-H. Li (1992). The molecular clock ticks regularly in muroid rodents and hamsters. J. Mol. Evol. 35:377–384.

    PubMed  CAS  Google Scholar 

  • Rasmussen, C. A., Hashizume, K., Orwig, K. E., Xu, L., and Soares, M. J. (1996). Decidual prolactin-related protein: Heterologous expression and characterization. Endocrinology 137:5558–5566.

    Article  PubMed  CAS  Google Scholar 

  • Rat Genome Sequencing Consortium (2004). Genome sequence of the brown Norway rat yields insights into mammalian evolution. Nature 428:493–521.

    Article  CAS  Google Scholar 

  • Rechavi, M. R., and Huchon, D. (2000). RRTree: Relative-rate tests between groups of sequences on a phylogenetic tree. Bioinformatics 16(3):296–297.

    Article  Google Scholar 

  • Robinson, M., Catzeflis, F., Briolay, J., and Mouchiroud, D. (1997). Molecular phylogeny of rodents, with special emphasis om murids: Evidence from nuclear gene LCAT. Mol. Phy. Evol. 8:423–434.

    Article  CAS  Google Scholar 

  • Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Bio. Evol. 4:406–425.

    CAS  Google Scholar 

  • Shida, M. M., Jackson-Grusby, L. L., Ross, S. R., and Linzer, D. I. H. (1992). Placental-specific expression from the mouse placental lactogen II gene promoter. Proc. Nat. Acad. Sci. 89:3864–3868.

    Article  PubMed  CAS  Google Scholar 

  • Soares, M. J., Chapman, B. M., Rasmussen, C. A., Dai, G., Kamei, T., and Orwig, K. E. (1996). Differentiation of trophoblast endocrine cells. Placenta 17:277–289.

    Article  PubMed  CAS  Google Scholar 

  • Soares, M. J., Miiller, H., Orwig, K. E., Peters, T. J., and Dai, G. (1998). The uteroplacental prolactin family and pregnancy. Biol. Reprod. 58:273–284.

    Article  PubMed  CAS  Google Scholar 

  • Wiemers, D. O., Shao, L. J., Ain, R., Dai, G., and Soares, M. J. (2003). The mouse prolactin gene family locus. Endocrinology 144(1):313–325.

    Article  PubMed  CAS  Google Scholar 

  • Wong, W. S. W., Yang, Z., Goldman, N., and Nielsen, R. (2004). Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168:1041–1051.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z. (1997). PAML: A program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13:555–556 (http://abacus.gene.ucl.ac.uk/software/paml.html).

    PubMed  CAS  Google Scholar 

  • Yang, Z., Nielsen, R., Goldman, N., and Pedersen, A.-M. K. (2000). Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449.

    PubMed  CAS  Google Scholar 

  • Yang, Z., Wong, W. S. W., and Nielsen, R. (2005). Bayes empirical Bayes inference of amino acid sites under positive selection. Mol. Biol. Evol. 22:1107–1118.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J. (2003). Evolution by gene duplication: An update. Trend. Ecol. Evol. 18(6):292–298.

    Article  Google Scholar 

  • Zhang, J., Rosenberg, H. F., and Nei, M. (1998). Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc. Nat. Acad. Sci. 95:3708–3713.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (30021004, 30430110). Yang Li was supported by Light in Western China of the Chinese Academy of Sciences. We thank Mr. Nelson Ting from the City University of New York for his great effort in editing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Ping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Huang, JF. & Zhang, YP. Adaptive Evolution of the First Extra Exon in the Murid Rodent Prolactin Gene Family. Biochem Genet 45, 397–408 (2007). https://doi.org/10.1007/s10528-007-9081-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-007-9081-2

KEY WORDS:

Navigation