Skip to main content
Log in

Numerical Modeling of Blood Flows in Rotary Pumps for Use in Pediatric Heart Surgery in Patients Undergoing the Fontan Procedure

  • Theory and Design
  • Published:
Biomedical Engineering Aims and scope

We present results from the first stage of numerical modeling of implanted rotary blood pumps which can be used in pediatric heart surgery in patients undergoing the Fontan procedure. Two three-dimensional models of pumps − the centrifugal and axial types − were constructed. Head pressure-flow characteristics were obtained for each model and the effects of pump geometry on blood flow at an operating point of 2.5 L/min were evaluated. Stagnation zones were identified by quantitative assessment of the volume of fluid with flow rates of 0-0.1 m/s. The distribution of flow lines was used to identify vortex zones. Numerical modeling of fluid flow in pumps was run in Fluent ANSYS 19.0 computational fluid dynamics software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Throckmorton, A. L. and Chopski, S. G., “Pediatric circulatory support: Current strategies and future directions. Biventricular and univentricular mechanical assistance,” ASAIO J., 54, No. 5, 491-497 (2008).

    Article  Google Scholar 

  2. Russo, P., Wheeler, A., Russ, J., and Tobias, J. D., “Use of a ventricular assist device as a bridge to transplantation in a patient with single ventricle physiology and total cavopulmonary anastomosis,” Pediatric Anesthesia, 18, No. 4, 320-324 (2008).

    Article  Google Scholar 

  3. Sadeghi, A. M., Marelli, D., Talamo, M., Fazio, D., and Laks, H., “Short-term bridge to transplant using the BVS 5000 in a 22-kg child,” Ann. Thorac. Surg., 70, No. 6, 2151-2153 (2000).

    Article  Google Scholar 

  4. Selishchev, S. V. and Telyshev, D. V., “Ventricular assist device Sputnik: Description, technical features and characteristics,” Trends Biomat. Artif. Org., 29, No. 3, 207-210 (2015).

    Google Scholar 

  5. Denisov, M. V., Selishchev, S. V., Telyshev, D. V., and Frolova, E. A., “Development of medical and technical requirements and simulation of the flow-pressure characteristics of the sputnik pediatric rotary blood pump,” Biomed. Eng., 50, No. 5, 296-299 (2017).

    Article  Google Scholar 

  6. D. L. S. Morales et al., “Lessons learned from the first application of the DeBakey VAD Child: An intracorporeal ventricular assist device for children,” J. Heart Lung Transplant., 24, No. 3, 331-337 (2005).

    Article  Google Scholar 

  7. Tanner, K., Sabrine, N., and Wren, C., “Cardiovascular malformations among preterm infants,” Pediatrics, 116, No. 6, 833-838 (2005).

    Article  Google Scholar 

  8. Jayakumar, K. A., Addonizio, L. J., Kichuk-Chrisant, M. R., et al., “Cardiac transplantation after the Fontan or Glenn procedure,” J. Am. Coll. Cardiol., 44, No. 10, 2065-2072 (2004).

    Article  Google Scholar 

  9. Gentles, T. L., Mayer, J. E., Gauvreau, K., et al., “Fontan operation in five hundred consecutive patients: Factors influencing early and late outcome,” J. Thorac. Cardiovasc. Surg., 114, No. 3, 376-391 (1997).

    Article  Google Scholar 

  10. Senzaki, H., Masutani, S., Ishido, H., et al., “Cardiac rest and reserve function in patients with Fontan circulation,” J. Am. Coll. Cardiol., 47, No. 12, 2528-2535 (2006).

    Article  Google Scholar 

  11. Lacour-Gayet, F. G., Lanning, C. J., Stoica, S., Wang, R., Rech, B. A., Goldberg, S., and Shandas, R., “An artificial right ventricle for failing Fontan: In vitro and computational study,” J. Thorac. Cardiovasc. Surg., 88, No. 1, 170-176 (2009).

    Google Scholar 

  12. Kutty, S., Li, L., Hasan, R., Peng, Q., Rangamani, S., and Danford, D. A., “Systemic venous diameters, collapsibility indices, and right atrial measurements in normal pediatric subjects,” J. Am. Soc. Echocardiogr., 27, No. 2, 155-162 (2014).

    Article  Google Scholar 

  13. Knobel, Z., Kellenberger, C. J., Kaiser, T., Albisetti, M., Bergsträsser, E., and Buechel, E. R., “Geometry and dimensions of the pulmonary artery bifurcation in children and adolescents: Assessment in vivo by contrast-enhanced MR-angiography,” Int. J. Cardiovasc. Imaging, 27, No. 3, 385-396 (2011).

    Article  Google Scholar 

  14. Salim, M. A., DiSessa, T. G., Arheart, K. L., and Alpert, B. S., “Contribution of superior vena caval flow to total cardiac output in children: A Doppler echocardiographic study,” Circulation, 92, No. 7, 1860-1865 (1995).

    Article  Google Scholar 

  15. Cheng, C. P., Herfkens, R. J., Lightner, A. L., Taylor, C. A., and Feinstein, J. A., “Blood flow conditions in the proximal pulmonary arteries and vena cavae: Healthy children during upright cycling exercise,” Am. J. Physiol. Heart Circ. Physiol., 287, No. 2, 921-926 (2004).

    Article  Google Scholar 

  16. Ovroutski, S., Nordmeyer, S., Miera, O., Ewert, P., Klimes, K., Klimes, T., and Berger, F., “Caval flow reflects Fontan hemodynamics: Quantification by magnetic resonance imaging,” Clin. Res. Cardiol., 101, No. 2, 133-138 (2012).

    Article  Google Scholar 

  17. Cheng, C. P., Herfkens, R. J., Taylor, C. A., and Feinstein, J. A., “Proximal pulmonary artery blood flow characteristics in healthy subjects measured in an upright posture using MRI: The effects of exercise and age,” J. Magn. Reson. Imaging, 21, No. 6, 752-758 (2005).

    Article  Google Scholar 

  18. Appleton, C. P., Hatle, L. K., and Popp, R. L., “Superior vena cava and hepatic vein Doppler echocardiography in healthy adults,” J. Am. Coll. Cardiol., 10, No. 5, 1032-1039 (1987).

    Article  Google Scholar 

  19. Wexler, L., Bergel, D. H., Gabe, I. T., Makin, G. S., and Mills, C. J., “Velocity of blood flow in normal human venae cavae,” Circ. Res., 23, No. 3, 349-359 (1968).

    Article  Google Scholar 

  20. Kovacs, G., Berghold, A., Scheidl, S., and Olschewski, H., “Pulmonary arterial pressure during rest and exercise in healthy subjects: A systematic review,” Eur. Respir. J., 34, No. 4, 888-894 (2009).

    Article  Google Scholar 

  21. Rowe, R. D. and James, L. S., “The normal pulmonary arterial pressure during the first year of life,” J. Pediatr., 51, No. 1, 1-4 (1957).

    Article  Google Scholar 

  22. Fowler, N. O., Westcott, R. N., and Scott, R. C., “Normal pressure in the right heart and pulmonary artery,” Am. Heart J., 46, No. 2, 264-267 (1953).

    Article  Google Scholar 

  23. Lakatta, E. G., Mitchell, J. H., Pomerance, A., and Rowe, G. G., “Human aging: Changes in structure and function,” J. Am. Coll. Cardiol., 10, No. 2, 42-47 (1987).

    Article  Google Scholar 

  24. Telyshev, D. V., Denisov, M. V., and Selishchev, S. V., “The effect of rotor geometry on the H−Q curves of the Sputnik implantable pediatric rotary blood pump,” Biomed. Eng., 50, No. 6, 420-424 (2017).

    Article  Google Scholar 

  25. Telyshev, D. V., Denisov, M. V., Pugovkin, A., Selishchev, S. V., and Nesterenko, I. V., “The progress in the novel pediatric rotary blood pump Sputnik development,” Artif. Organs, 42, No. 4, 432-443 (2018).

    Article  Google Scholar 

  26. Moazami, N., Fukamachi, K., Kobayashi, M., Smedira, N. G., Hoercher, K. J., Massiello, A., Lee, S., Horvath, D. J., and Starling, R. C., “Axial and centrifugal continuous-flow rotary pumps: A translation from pump mechanics to clinical practice,” J. Heart Lung Transplant., 32, No. 1, 1-11 (2013).

    Article  Google Scholar 

  27. Chiu, W. C., Slepian, M. J., and Bluestein, D., “Thrombus formation patterns in the HeartMate II ventricular assist device: Clinical observations can be predicted by numerical simulations,” ASAIO J., 60, No. 2, 237-240 (2014).

    Article  Google Scholar 

  28. Fraser, K. H., Zhang, T., Taskin, M. E., et al., “A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: Shear stress, exposure time and hemolysis index,” J. Biomed. Eng., 134, No. 8 (2012).

  29. Thamsen, B., Blümel, B., Schaller, J., et al., “Numerical analysis of blood damage potential of the HeartMate II and HeartWare HVAD rotary blood pumps,” Artif. Org., 39, No. 8, 651-659 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Telyshev.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 52, No. 6, Nov.-Dec., 2018, pp. 32-35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telyshev, D.V., Denisov, M.V. & Selishchev, S.V. Numerical Modeling of Blood Flows in Rotary Pumps for Use in Pediatric Heart Surgery in Patients Undergoing the Fontan Procedure. Biomed Eng 52, 407–411 (2019). https://doi.org/10.1007/s10527-019-09857-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-019-09857-5

Navigation