Skip to main content

Advertisement

Log in

Geometry and dimensions of the pulmonary artery bifurcation in children and adolescents: assessment in vivo by contrast-enhanced MR-angiography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

We sought to establish normal values for the diameters of the main (MPA), right (RPA), and left (LPA) pulmonary arteries and for the angles describing the geometry of the pulmonary artery bifurcation in children by using contrast-enhanced magnetic resonance angiography (CE-MRA). CE-MRA was performed in 69 children without cardiovascular disease. The median age was 10 ± 4.9 years (range 2–20), weight 37.4 ± 18.5 kg (10–82), body surface area (BSA) 1.18 ± 0.4 m2 (0.48–2.07). The pulmonary artery diameters and angles were measured at standardized sites and projections. Regression analysis of diameters and angles in relation to BSA demonstrated linear relationship between the cross-sectional diameters of the pulmonary arteries and the square root of BSA (BSA0.5). Normalized mean diameters were for the MPA 17.6 ± 5.1 mm/m2, origin of RPA 13.1 ± 2.9 mm/m2, origin of LPA 14.2 ± 2.9 mm/m2. The MPA showed a mean antero-posterior inclination of 33° ± 8° and a lateral leftward angulation of 18° ± 5°. The mean angle of the bifurcation was 99.5° ± 10.3°. Both side branches showed a supero-inferior course of the proximal segments, steeper for the RPA (7.7° ± 6.5°) than for the LPA (2.1° ± 7.8°). Normative curves in relation to BSA are presented for all measurements. This study provides normative values by CE-MRA for the main pulmonary artery and its side branches in children during somatic growth. These data can be used for identifying pulmonary arteries anomalies in children, and evaluate the need and the modality for treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rabinovitch M, Herrera-deLeon V, Castaneda AR, Reid L (1981) Growth and development of the pulmonary vascular bed in patients with tetralogy of Fallot with or without pulmonary atresia. Circulation 64(6):1234–1249

    PubMed  CAS  Google Scholar 

  2. Rabinovitch M, Reid LM (1981) Quantitative structural analysis of the pulmonary vascular bed in congenital heart defects. Cardiovasc Clin 11(2):149–169

    PubMed  CAS  Google Scholar 

  3. Duncan BW, Mee RBB, Prieto LR, Rosenthal GL, Mesia CI, Qureshi A, Tucker OP, Rhodes JF, Latson LA (2003) Staged repair of tetralogy of Fallot with pulmonary atresia and major aortopulmonary collateral arteries. J Thorac Cardiovasc Surg 126(3):694–702. doi:10.1016/S0022-5223(03)00700-1

    Article  PubMed  Google Scholar 

  4. Reddy VM, McElhinney DB, Amin Z, Moore P, Parry AJ, Teitel DF, Hanley FL (2000) Early and intermediate outcomes after repair of pulmonary atresia with ventricular septal defect and major aortopulmonary collateral arteries: experience with 85 patients. Circulation 101(15):1823–1832

    Google Scholar 

  5. Kaczmarek I, Schmauss D, Reichart B, Daebritz SH (2006) Complete autologous reconstruction of the aorta and the pulmonary bifurcation in truncus arteriosus communis. Eur J Cardiothorac Surg 30(4):675–677. doi:10.1016/j.ejcts.2006.06.033

    Article  PubMed  Google Scholar 

  6. Oechslin EN, Harrison DA, Harris L, Downar E, Webb GD, Siu SS, Williams WG (1999) Reoperation in adults with repair of tetralogy of fallot: indications and outcomes. J Thorac Cardiovasc Surg 118(2):245–251

    Article  PubMed  CAS  Google Scholar 

  7. Ishibashi N, Shin’oka T, Ishiyama M, Sakamoto T, Kurosawa H (2007) Clinical results of staged repair with complete unifocalization for pulmonary atresia with ventricular septal defect and major aortopulmonary collateral arteries. Eur J Cardiothorac Surg 32(2):202–208. doi:10.1016/j.ejcts.2007.04.022

    Article  PubMed  Google Scholar 

  8. Knott-Craig CJ, Julsrud PR, Schaff HV, Puga FJ, Danielson GK (1993) Pulmonary artery size and clinical outcome after the modified Fontan operation. Ann Thorac Surg 55(3):646–651

    Article  PubMed  CAS  Google Scholar 

  9. Senzaki H, Isoda T, Ishizawa A, Hishi T (1994) Reconsideration of criteria for the Fontan operation. Circulation 89(3):1196–1202

    PubMed  CAS  Google Scholar 

  10. Gussenhoven WJ, van Leenen BF, Kuis W, de Villeneuve VH, Born N (1983) Comparison of internal diameter of great arteries in congenital heart disease. A cross-sectional echocardiographic study. Br Heart J 49(1):45–50. doi:10.1136/hrt.49.1.45

    Article  PubMed  CAS  Google Scholar 

  11. Lappen RS, Riggs TW, Lapin GD, Paul MH, Muster AJ (1983) Two-dimensional echocardiographic measurement of right pulmonary artery diameter in infants and children. J Am Coll Cardiol 2(1):121–126. doi:10.1016/s0735-1097(83)80384-2

    Article  PubMed  CAS  Google Scholar 

  12. Snider AR, Enderlein MA, Teitel DF, Juster RP (1984) Two-dimensional echocardiographic determination of aortic and pulmonary artery sizes from infancy to adulthood in normal subjects. Am J Cardiol 53(1):218–224

    Article  PubMed  CAS  Google Scholar 

  13. Van Meurs-van Woezik H, Debets T, Klein HW (1987) Growth of the internal diameters in the pulmonary arterial tree in infants and children. J Anat 151:107–115

    PubMed  Google Scholar 

  14. Rammos S, Kramer HH, Trampisch HJ, Krogmann ON, Kozlik R, Bourgeois M (1989) Normal values of the growth of the pulmonary arteries in children—an angiography study. Herz 14:348–357

    PubMed  CAS  Google Scholar 

  15. Rammos S, Apostolopoulou SC, Kramer HH, Kozlik-Feldmann R, Heusch A, Laskari CV, Anagnostopoulos C (2005) Normative angiographic data relating to the dimensions of the aorta and pulmonary trunk in children and adolescents. Cardiol Young 15(2):119–124. doi:10.1017/S1047951105000272

    Article  PubMed  Google Scholar 

  16. Valsangiacomo Büchel E, DiBernardo S, Bauersfeld U, Berger F (2005) Contrast-enhanced magnetic resonance angiography of the great arteries in patients with congenital heart disease: an accurate tool for planning catheter-guided interventions. Int J Cardiovasc Imaging 21(2–3):313–322. doi:10.1007/s10554-004-4017-y

    Article  PubMed  Google Scholar 

  17. Fratz S, Hess J, Schuhbaeck A, Buchner C, Hendrich E, Martinoff S, Stern H (2008) Routine clinical cardiovascular magnetic resonance in paediatric and adult congenital heart disease: patients, protocols, questions asked and contributions made. J Cardiovasc Magn Reson 10(1):46. doi:10.1186/1532-429X-10-46

    Article  PubMed  Google Scholar 

  18. Schievano S, Coats L, Migliavacca F, Norman W, Frigiola A, Deanfield J, Bonhoeffer P, Taylor A (2007) Variations in right ventricular outflow tract morphology following repair of congenital heart disease: implications for percutaneous pulmonary valve implantation. J Cardiovasc Magn Reson 9(4):687–695. doi:10.1080/10976640601187596

    Article  PubMed  Google Scholar 

  19. Prader L, Molinari I (1989) Wachstumskurven (Perzentilen). Helv Paediatr Acta Suppl 52:1–125

    PubMed  CAS  Google Scholar 

  20. Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317(17):1098

    PubMed  CAS  Google Scholar 

  21. Kaiser T, Kellenberger C, Albisetti M, Bergsträsser E, Valsangiacomo Büchel E (2008) Normal values for aortic diameters in children and adolescents—assessment in vivo by contrast-enhanced MR-angiography. J Cardiovasc Magn Reson 10(1):56. doi:10.1186/1532-429X-10-56

    Article  PubMed  Google Scholar 

  22. Sluysmans T, Colan SD (2005) Theoretical and empirical derivation of cardiovascular allometric relationships in children. J Appl Physiol 99:445–457. doi:10.1152/japplphysiol.01144.2004

    Article  PubMed  Google Scholar 

  23. Gutgesell HP, Rembold CM (1990) Growth of the human heart relative to body surface area. Am J Cardiol 65(9):662–668

    Article  PubMed  CAS  Google Scholar 

  24. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  PubMed  CAS  Google Scholar 

  25. Sievers HH, Onnasch GGW, Lange P, Bernhard A, Heintzen PH (1983) Dimensions of the great arteries, semilunar valve root, and right ventricular outflow tract during growth: normative angiographic data. Pediatr Cardiol 4(3):189–196. doi:10.1007/BF02242254

    Article  PubMed  CAS  Google Scholar 

  26. Fanucci E, Orlacchio A, Pocek M (1988) The vascular geometry of human arterial bifurcations. Invest Radiol 23(10):713–718

    Article  PubMed  CAS  Google Scholar 

  27. Zamir M, Bigelow DC (1984) Cost of departure from optimality in arterial branching. J Theor Biol 109(3):401–409. doi:10.1016/S0022-5193(84)80089-2

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. Luciano Molinari for the statistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela R. Valsangiacomo Buechel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knobel, Z., Kellenberger, C.J., Kaiser, T. et al. Geometry and dimensions of the pulmonary artery bifurcation in children and adolescents: assessment in vivo by contrast-enhanced MR-angiography. Int J Cardiovasc Imaging 27, 385–396 (2011). https://doi.org/10.1007/s10554-010-9672-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-010-9672-6

Keywords

Navigation