Skip to main content
Log in

A novel antimicrobial protein of the endophytic Bacillus amyloliquefaciens and its control effect against Fusarium chlamydosporum

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Fusarium chlamydosporum is the causal agent of stem rot in Jacaranda acutifolia. Bacillus amyloliquefaciens is an endophytic bacterium that shows promising biological control activity against F. chlamydosporum. In this study, B. amyloliquefaciens was cultured in a fermentation broth, and the main antimicrobial substance in the fermentation broth was isolated using the ammonium sulfate precipitation method and purified by DEAE sepharose fast flow weak anion exchange chromatography and sephadex G-50 molecular sieve chromatography. Polyacrylamide gel electrophoresis revealed a single antimicrobial protein with a molecular weight of approximately 29.0 kDa. The antimicrobial protein is a strong antagonist against F. chlamydosporum, leading to mycelial deformity, unclear mycelial septa, and isolated and granulated intracellular protoplasm. The N-terminal eight-amino acid sequence, NH2-Gly-Arg-Pro-Leu-Pro-Leu-Ala-Ala, was determined using the automatic Edman degradation method. BLAST analysis indicated that the amino acid residue sequence at positions 154–161 shows 100% homology to the hypothetical protein of Chromobacterium sp. LK1. However, no known homologous antimicrobial protein was identified, indicating that we have isolated a novel antimicrobial protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ajit NS, Verma R, Schanmugam V (2006) Extracellular chitinases of fluorescent Pseudomonads antifungal to Fusarium oxysporum f. sp. dianthi causing carnation wilt. Curr Microbiol 52:310–316

    CAS  PubMed  Google Scholar 

  • Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, Fickers P (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Fact 8:63

    PubMed Central  PubMed  Google Scholar 

  • Arrebola E, Sivakumar D, Korsten L (2010) Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus. Biol Control 53:122–128

    CAS  Google Scholar 

  • Bacon CW, Hinton DM (2002) Endophytic and biological control potential of Bacillus mojavensis and related species. Biol Control 23:274–284

    CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    CAS  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Compant S, Brader G, Muzammil S, Sessitsch A, Lebrihi A, Mathieu F (2013) Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. BioControl 58:435–455

    Google Scholar 

  • Crane JM, Gibson DM, Vaughan RH, Bergstrom GC (2013) Iturin levels on wheat spikes linked to biological-control of Fusarium head blight by Bacillus amyloliquefaciens. Phytopathology 103:146–155

    CAS  PubMed  Google Scholar 

  • De Meyer G, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    PubMed  Google Scholar 

  • Farace G, Fernandez O, Jacquens L, Coutte F, Krier F, Jacques P, Clément C, Barka EA, Jacquard C, Dorey S (2015) Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol Plant Pathol 16:177–187

    CAS  PubMed  Google Scholar 

  • Goudjal Y, Toumatia O, Yekkour A, Sabaou N, Mathieu F, Zitouni A (2014) Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiol Res 169:59–65

    CAS  PubMed  Google Scholar 

  • Gruau C, Trotel-Aziz P, Villaume S, Rabenoelina F, Clément C, Baillieul F, Aziz A (2015) Pseudomonas fluorescens PTA-CT2 triggers local and systemic immune response against Botrytis cinerea in grapevine. Mol Plant Microbe Interact 28:1117–1129

    CAS  PubMed  Google Scholar 

  • Gupta R, Vakhlu J (2015) Native Bacillus amyloliquefaciens W2 as a potential biocontrol for Fusarium oxysporum R1 causing corm rot of Crocus sativus. Eur J Plant Pathol 143:123–131

    Google Scholar 

  • Haggag WM (2008) Isolation of bioactive antibiotic peptides from Bacillus brevis and Bacillus polymyxa against Botrytis grey mould in strawberry. Arch Phytopathol Plant Prot 41:477–491

    CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    PubMed Central  PubMed  Google Scholar 

  • Kim PI, Ryu J, Kim YH, Chi YT (2010) Production of biosurfactant lipopeptides iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20:138–145

    CAS  PubMed  Google Scholar 

  • Lee GH, Ryu CM (2016) Spraying of leaf-colonizing Bacillus amyloliquefaciens protects pepper from Cucumber mosaic virus. Plant Dis 100:2099–2105

    CAS  PubMed  Google Scholar 

  • Lee YS, Naning KW, Nguyen XH, Kim SB, Moon JH, Kim KY (2014) Ovicidal activity of lactic acid produced by Lysobacter capsici YS1215 on eggs of root-knot nematode, Meloidogyne incognita. Microbiol Biotechnol 24:1510–1515

    CAS  Google Scholar 

  • Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, Eptonand HAS, Harbour A (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J Appl Bacteriol 78:97–108

    CAS  PubMed  Google Scholar 

  • Lisianne BB, Renata VV, Marcia PL, da Luis Fernando CM, Adriano B (2010) Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. J Microbiol 48(6):791–797

    Google Scholar 

  • Liu Z, Wang YT, Jia XQ, Lu WY (2019) Isolation of secondary metabolites with antimicrobial activities from Bacillus amyloliquefaciens LWYZ003. Trans Tianjin Univ 25(1):38–44

    CAS  Google Scholar 

  • Mahajan G, Balachandran L (2015) Biodiversity in production of antibiotics and other bioactive compounds. Adv Biochem Eng 147:37–58

    CAS  Google Scholar 

  • Malfanova N, Franzil L, Lugtenberg B, Chebotar V, Ongena M (2012) Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch Microbiol 194:893–899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM (2007) Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol 73(22):7259–7267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Munimbazi C, Bullerman LB (1998) Isolation and partial characterization of antifungal metabolites of Bacillus pumilus. J Appl Microbiol 84:959–968

    CAS  PubMed  Google Scholar 

  • Neeraja C, Anil K, Purushotham P, Suma K, Sarma P, Moerschbacher BM, Podile AR (2010) Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Crit Rev Biotechnol 30:231–241

    CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    CAS  PubMed  Google Scholar 

  • Patcharaporn B, Chotima P, Julian GH, Rasana WS (2017) Secondary metabolites from Bacillus amyloliquefaciens isolated from soil can kill Burkholderia pseudomallei. AMB Express 16(7):1–11

    Google Scholar 

  • Paul B, Girard I, Bhatnagar T, Bouchet P (1997) Suppression of Botrytis cinerea causing grey mould disease of grape vine (Vitis vinifera) and its pectinolytic activities by a soil bacterium. Microbiol Res 152:413–420

    CAS  Google Scholar 

  • Peng Y, Zhu TH (2016) Isolation, purification and partial characterization of an antifungal protein from Streptomyces sampsonii KJ07. Microbiol China 439:180–187 (in Chinese)

    Google Scholar 

  • Pretorius D, van Rooyen J, Clarke KG (2015) Enhanced production of antifungal lipopeptides by Bacillus amyloliquefaciens for biocontrol of postharvest disease. New Biotechnol 32:243–252

    CAS  Google Scholar 

  • Pyoungil K, Kichul C (2004) Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol Lett 234:177–183

    Google Scholar 

  • Reva ON, Dixeliu C, Meijer J (2004) Taxonomic characterization and plant colonizing abilities of some bacteria related to Baicllus amyloliquefaciens and Bacillus subtilis. FEMS Microbiol Ecol 48:249–259

    CAS  PubMed  Google Scholar 

  • Saravanakumar K, Sivanesan S, Samuel G, Mohammed I, Rajadas J (2005) Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16. Process Biochem 40:3236–3243

    Google Scholar 

  • Sasidharan NK, Bala N, Andikkannu S, Chellapan M, Ruby JA (2014) Isolation and identification of antimicrobial secondary metabolites from Bacillus cereus associated with a rhabditid entomopathogenic nematode. Ann Microbiol 64:209–218

    Google Scholar 

  • Selim S, Negrel J, Govaerts C, Gianinazzi S, Tuinen DV (2005) Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 isolated from the sorghum mycorhizosphere. Appl Environ Microbiol 71:6501–6507

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silva LJ, Crevelin EJ, Souza WR, Moraes LA, DeMelo IS, Zucchi TD (2014) Streptomyces araujoniae produces a multiantibiotic complex with ionophoric properties to control Botrytis cinerea. Phytopathology 104:1298–1305

    CAS  PubMed  Google Scholar 

  • Simpson RJ (2004) Purifying proteins for proteomics: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Solanki DS, Kumar S, Parihar K, Tak A, Gehlot P, Pathak R, Singh SK (2018) Characterization of a novel seed protein of Prosopis cineraria showing antifungal activity. Int J Biol Macromol 116:16–22

    CAS  PubMed  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specifiic functions. Mol Microbiol 56:845–857

    CAS  PubMed  Google Scholar 

  • Tenorio-Salgado S, Tinoco R, Vazquez-Duhalt R, Caballero-Mellado J, Perez-Rueda E (2013) Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. Bioengineering 4:1–8

    Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant-pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Google Scholar 

  • Wise C, Novitsky L, Tsopmo A, Avis TJ (2012) Production and antimicrobial activity of 3-hydroxypropionalde-hyde from Bacillus subtilis strain CU12. J Chem Ecol 38:1521–1527

    CAS  PubMed  Google Scholar 

  • Zhai CY (2004) Biomolecular experimental materials. Sichuan University Press, Chengdu, pp 115–121 (in Chinese)

    Google Scholar 

  • Zhang LN, Zhu TH, Li FL (2012) Identification of antagonistic strain G3 against Arthrinium phaeospermum and purification of its antifungal protein. Acta Phytopathol Sin 42(3):242–251 (in Chinese)

    Google Scholar 

  • Zhou J, Zhang W, Li DM (2013) Sequence analysis and chilling resistance about a new CBF-like trascription factor fragment from Jacaranda acutifolia. For Res 26(4):414–419

    Google Scholar 

  • Zhu HMY, Pan YZ (2017) Screening for endophytic antagonistic bacterium of Jacaranda acutifolia and biocontrol effect against stem rot. J Nanjing For Univ 41(6):61–67 (in Chinese)

    Google Scholar 

  • Zhu HMY, Li X, Zhu TH (2015) Study on the pathogen identification of Jacaranda acutifolia stem rot and its phylogenetic analysis. J Northeast For Univ 43(5):112–117 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation of National Science and Technology Platform Infrastructure (Grant No. 2005DK21207-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-zhi Pan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Fouad Daayf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Hm., Pan, Yz. A novel antimicrobial protein of the endophytic Bacillus amyloliquefaciens and its control effect against Fusarium chlamydosporum. BioControl 64, 737–748 (2019). https://doi.org/10.1007/s10526-019-09972-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-019-09972-y

Keywords

Navigation