Skip to main content
Log in

Temperature-dependent development of Macrolophus pygmaeus and its applicability to biological control

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

A linear model and three nonlinear models (Logan type III, Lactin and Brière) were applied to Macrolophus pygmaeus (Rambur) (Hemiptera: Miridae) at constant temperatures and validated under diel temperature variation, and field conditions. Complete development from egg to adult, with >80% survivorship, occurred at nine constant temperatures between 15 and 32 °C. Total developmental time decreased from a maximum at 15 °C (68.48 days) to a minimum at 30 °C (18.69 days) and then increased at 32 °C (23.44 days). Optimal survival and the highest developmental rate occurred within the range of 27–30 °C. The adjusted determination coefficients were high for linear and nonlinear models (>0.89). Field validation showed high levels of accuracy in all models (≥93.4%). These valid mathematical models contribute to optimal application, field management, and mass rearing of M. pygmaeus for its applicability to biological control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beck SD (1983) Insect thermoperiodism. Annu Rev Entomol 28:91–108

    Article  Google Scholar 

  • Belda JE, Calvo FJ, Giménez A (2010) Control biological strategies of Tuta absoluta in tomatoes using releases of Nesidiocoris tenuis at the nursery stage. Phytoma España 217:48–52

    Google Scholar 

  • Belehrádek J (1935) Temperature and living matter. Protoplasma Monographien, vol 8. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Brière J, Pracros P, Le Roux A, Pierre J (1999) A novel rate model of temperature-dependent development for arthropods. Environ Entomol 28:22–29

    Article  Google Scholar 

  • Campbell A, Frazer B, Gilbert N, Gutierrez A, Mackauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:431–438

    Article  Google Scholar 

  • Castañé C, Arnó J, Gabarra R, Alomar O (2011) Plant damage to vegetable crops by zoophytophagous mirid predators. Biol Control 59:22–29

    Article  Google Scholar 

  • Davidson J (1944) On the relationship between temperature and rate of development of insects at constant temperatures. J Econ Entomol 13:26–38

    Google Scholar 

  • De Clercq P, Degheele D (1992) Development and survival of Podisus maculiventris (Say) and Podisus sagitta (Fab.) (Heteroptera: Pentatomidae) at various constant temperatures. Can Entomol 124:125–133

    Article  Google Scholar 

  • Fan Y (1992) Temperature-dependent development of Mexican bean beetle (Coleoptera: Coccinellidae) under constant and variable temperatures. J Econ Entomol 85:1762–1770

    Article  Google Scholar 

  • García-Ruiz E, Marco V, Pérez-Moreno I (2011) Effects of variable and constant temperatures on the embryonic development and survival of a new grape pest, Xylotrechus arvicola (Coleoptera: Cerambycidae). Environ Entomol 40:939–947

    Article  PubMed  Google Scholar 

  • Hansen DL, Brodsgaard HF, Enkegaard A (1999) Life table characteristics of Macrolophus caliginosus preying upon Tetranychus urticae. Entomol Exp Appl 93:269–275

    Article  Google Scholar 

  • Hilbert DW, Logan JA (1983) Empirical model of nymphal development for the migratory grasshopper, Melanopus sanguinipes (Orthoptera, Acrididae). Environ Entomol 12:1–5

    Article  Google Scholar 

  • Janisch E (1932) The influence of temperature on the life-history of insects. Trans R Entomol Soc Lond 80:137–168

    Article  Google Scholar 

  • Johnson SN, Zhang X, Crawford JW, Gregory PJ, Young IM (2007) Egg hatching and survival time of soil-dwelling insect larvae: a partial differential equation model and experimental validation. Ecol Model 202:493–502

    Article  Google Scholar 

  • Kim T, Ahn JJ, Lee JH (2013) Age- and temperature-dependent oviposition model of Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) with Tetranychus urticae as prey. J Appl Entomol 137(4):282–288

    Article  Google Scholar 

  • Lactin DJ, Holliday NJ, Johnson DL, Craigen R (1995) Improved rate model of temperature-dependent development by arthropods. Environ Entomol 24:68–75

    Article  Google Scholar 

  • Li D (1995) Development and survival of Erigonidium graminicolum (Sundevall) (Araneae: Linyphiidae: Erigoninae) at constant temperatures. Bull Entomol Res 85:79–91

    Article  Google Scholar 

  • Logan JA (1988) Toward an expert system for development of pest simulation models. Environ Entomol 17:359–376

    Article  Google Scholar 

  • Logan J, Wollkind D, Hoyt S, Tanigoshi L (1976) An analytic model for description of temperature dependent rate phenomena in arthropods. Environ Entomol 5:1133–1140

    Article  Google Scholar 

  • Lykouressis D, Perdikis D, Michalaki M (2001) Nymphal development and survival of Macrolophus pygmaeus Rambur (Hemiptera: Miridae) on two eggplant varieties as affected by temperature and presence/absence of prey. Biol Control 20:222–227

    Article  Google Scholar 

  • Maes S, Machtelinckx T, Moens M, Grégoire JC, De Clercq P (2012) The influence of acclimation, endosymbionts and diet on the supercooling capacity of the predatory bug Macrolophus pygmaeus. BioControl 57:643–651

    Article  Google Scholar 

  • Martínez-García H, Román-Fernández LR, Saénz-Romo MG, Pérez-Moreno I, Marco-Mancebón V (2016) Optimizing Nesidiocoris tenuis (Hemiptera: Miridae) as a biological control agent: mathematical models for predicting its development as a function of temperature. Bull Entomol Res 106:215–224

    Article  PubMed  Google Scholar 

  • Maselou DA, Perdikis D, Sabelis MW, Fantinou AA (2014) Use of plant resources by an omnivorous predator and the consequences for effective predation. Biol Control 79:92–100

    Article  Google Scholar 

  • Moerkens R, Berckmoes E, Van Damme V, Ortega-Parra N, Hanssen I, Wuytack M, Wittemans L, Casteels H, Tirry L, De Clercq P, De Vis R (2016) High population densities of Macrolophus pygmaeus on tomato plants can cause economic fruit damage: interaction with Pepino mosaic virus? Pest Manag Sci 72(7):1350–1358

    Article  CAS  PubMed  Google Scholar 

  • Mollá O, Biondi A, Alonso-Valiente M, Urbaneja A (2014) A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control. BioControl 59:175–183

    Article  Google Scholar 

  • Nannini M, Atzori F, Murgia G, Pisci R, Sanna F (2012) Use of predatory mirids for control of the tomato borer Tuta absoluta (Meyrick) in Sardinian greenhouse tomatoes. EPPO Bull 42:255–259

    Article  Google Scholar 

  • Nannini M, Atzori F, Coinu M, Murgia G, Pintore R, Pisci R, Sanna F (2014) Developing improved methods for the release of Macrolophus pygmaeus (Rambur) (Heteroptera: Miridae) in Sardinian tomato greenhouses. Acta Hort 1041:163–170

    Article  Google Scholar 

  • Perdikis DC, Lykouressis DP (2000) Effects of various items, host plants, and temperatures on the developmental and survival of Macrolophus pygmaeus Rambur (Heteroptera: Miridae). Biol Control 17:55–60

    Article  Google Scholar 

  • Perdikis DC, Lykouressis DP (2002) Life table and biological characteristics of Macrolophus pygmaeus when feeding on Myzus persicae and Trialeurodes vaporariorum. Entomol Exp Appl 102:261–272

    Article  Google Scholar 

  • Perdikis DC, Lykouressis DP, Economou LP (1999) The influence of temperature, photoperiod and plant type on the predation rate of Macrolophus pygmaeus on Myzus persicae. BioControl 44:281–289

    Article  Google Scholar 

  • Roy M, Brodeur J, Cloutier C (2002) Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environ Entomol 31:177–187

    Article  Google Scholar 

  • Scientific Jandel (1994) Tablecurve 2D user’s manual. Jandel Co., San Rafael

    Google Scholar 

  • Stinner R, Gutierrez A, Butler G (1974) An algorithm for temperature-dependent growth rate simulation. Can Entomol 106:519–524

    Article  Google Scholar 

  • Trottin-Caudal Y, Baffert V, Leyre JM, Hulas N (2012) Experimental studies on Tuta absoluta (Meyrick) in protected tomato crops in France: Biological control and integrated crop protection. EPPO Bull 42:234–240

    Article  Google Scholar 

  • Urbaneja A, González-Cabrera J, Arnó J, Gabarra R (2012) Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Manag Sci 68:1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Vangansbeke D, Audenaert J, Nguyen DT, Verhoeven R, Gobin B, Tirry L, De Clercq P (2015) Diurnal temperature variations affect development of a herbivorous arthropod pest and its predators. PLoS ONE 10(4):e0124898

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner TL, Wu H, Sharpe PJH, Schoolfield RM, Coulson RN (1984) Modeling insect development rates: a literature review and application of a biophysical model. Ann Entomol Soc Am 77:208–225

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente S. Marco-Mancebón.

Additional information

Handling Editor: Patrick De Clercq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-García, H., Sáenz-Romo, M.G., Aragón-Sánchez, M. et al. Temperature-dependent development of Macrolophus pygmaeus and its applicability to biological control. BioControl 62, 481–493 (2017). https://doi.org/10.1007/s10526-017-9798-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-017-9798-8

Keywords

Navigation