Skip to main content
Log in

Temperature-Dependent Development Modeling of the Phorid Fly Megaselia halterata (Wood) (Diptera: Phoridae)

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

The effect of temperature on the development of Megaselia halterata (Wood) (Diptera: Phoridae) on A15 variety of button mushroom in the stages of casing and spawn-running was investigated at eight constant temperatures (10, 12.5, 15, 18, 20, 22.5, 25, and 27°C) and developmental rates were modeled as a function of temperature. At 25 and 27°C, an average of 22.2 ± 0.14 and 20.0 ± 0.10 days was needed for M. halterata to complete its development from oviposition to adult eclosion in the stages of casing and spawn-running, respectively. The developmental times of males or females at various constant temperatures were significantly different. Among the linear models, the Ikemoto and Takai linear model in the absence of 12.5 and 25°C showed the best statistical goodness-of-fit and based on this model, the lower developmental threshold and the thermal constant were estimated as 10.4°C and 526.3 degree-days, respectively. Twelve nonlinear temperature-dependent models were examined to find the best model to describe the relationship between temperature and development rate of M. halterata. The Logan 10 nonlinear model provided the best estimation for T opt and T max and is strongly recommended for the description of temperature-dependent development of M. halterata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC-19:716–723

    Article  Google Scholar 

  • Analytis S (1981) Relationship between temperature and development times in phytopathogenic fungus and in plant pests: a mathematical model. Agric Res 5:133–159

    Google Scholar 

  • Briere JF, Pracros P, Le Roux AY, Pierre JS (1999) A novel rate model of temperature-dependent development for arthropods. Environ Entomol 28:22–29

    Article  Google Scholar 

  • Campbell A, Frazer BD, Gilbert N, Gutierrez AP, Mackauer M (1974) Temperature requirements of some aphids and their parasites. J Appl Ecol 11:431–438

    Article  Google Scholar 

  • Chang ST (1996) Mushroom research and development equality and mutual benefit. In: Royse DJ (ed) Mushroom biology and mushroom products. State College, the Pennsylvania State University. ISBN 1-883956-01-3, pp 1–10

  • Chang ST, Miles PG (1989) Edible mushrooms and their cultivation. CRC Press, Boca Raton, FL

    Google Scholar 

  • Chidawanyika F (2010) Thermal tolerance of Cydia pomonella (Lepidoptera: Tortricidae) under ecologically relevant conditions. PhD. Thesis, University of Stellenbosch, Stellenbosch.

  • Engelmann F (1998) Reproduction in insects. In: Huffaker CB, Gutierrez AP (eds) Ecological entomology. John Wiley and Sons, INC, California. USA, p 756

    Google Scholar 

  • Fan L, Pan H, Soccol AT, Pandey A, Soccol CR (2006) Advances in mushroom research in the last decade. Food Technol Biotechol 44(3):303–31

    CAS  Google Scholar 

  • Fantinou AA, Perdikis DC, Chatzoglou CS (2003) Development of immature stages of Sesamia nonagrioides (Lepidoptera: Noctuidae) under alternating and constant temperatures. Environ Entomol 32(6):1337–1342

    Article  Google Scholar 

  • Fletcher JT, Gaze RH (2008) Mushroom pest and disease control. Manson Publishing, London, UK, p 192

    Google Scholar 

  • Gordon HT (1998) Growth and development of insects. In: Huffaker CB, Gutierrez AP (eds) Ecological entomology. John Wiley and Sons, INC, California. USA, pp 55–82

    Google Scholar 

  • Grove JF, Blight MM (1983) The oviposition attractant for the mushroom phorid Megaselia halterata: the identification of volatiles present in mushroom house air. J Sci Food Agric 34:181–185

    Article  CAS  Google Scholar 

  • Harcourt DC, Yee JM (1982) Polynomial algorithm for predicting the duration of insect life stages. Environ Entomol 11:581–584

    Article  Google Scholar 

  • Honek A (1999) Constraints on thermal requirements for insect development. Entomol Sci 2:615–621

    Google Scholar 

  • Horn DJ (1988) Ecological approach to pest management. United Kingdom, Chapman & Hall, London

    Google Scholar 

  • Huffaker C, Berryman A, Turchin P (1999) Dynamics and regulation of insect populations. In: Huffaker CB, Gutierrez AP (eds) Ecological entomology. Wiley, New York, pp 269–305

    Google Scholar 

  • Hussey NW (1959) Biology of mushroom phorids. Mushroom Sci 4:260–269

    Google Scholar 

  • Ikemoto T, Takai K (2000) A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environ Entomol 29:671–682

    Article  Google Scholar 

  • Janisch E (1932) The influence of temperature on the life history of insects. Trans Entomol Soc Lond 80:137–168

    Article  Google Scholar 

  • Jarosik V, Honek A, Dixon AFG (2002) Developmental rate isomorphy in insects and mites. Am Nat 160(4):497–510

    Article  PubMed  Google Scholar 

  • Keena MA (2006) Effects of temperature on Anoplophora glabripennis (Coleoptera: Cerambycidae) adult survival, reproduction, and egg hatch. Environ Entomol 35(4):912–921

    Article  Google Scholar 

  • Kheradmand K, Kamali K, Fathipour Y, Mohammadi Goltapeh E (2007a) Development, life table and thermal requirement of Tyrophagus putrescentiae (Astigmata: Acaridae) on mushrooms. J Stored Prod Res 43:276–281

    Article  Google Scholar 

  • Kheradmand K, Kamali K, Fathipour Y, Mohammadi Goltapeh E, Ueckermann EA (2007b) Thermal requirement for development of Sancassania rodionovi (Acari: Acaridae) on mushrooms. J Econ Entomol 100(4):1098–1103

    Article  PubMed  Google Scholar 

  • Kontodimas DC, Eliopoulos PA, Stathas GJ, Economou LP (2004) Comparative temperature-dependent development of Nephus includes (Kirsch) and Nephus bisignatus (Boheman) (Col., Coccinelidae) preying on Planococcus citri (Rossi) (Hom., Peseudococcidae), evaluation of a linear and various nonlinear models using specific. Environ Entomol 33(1):1–11

    Article  Google Scholar 

  • Lactin DJ, Holliday NJ, Johnson DL, Craigen R (1995) Improved rate model of temperature-dependent development by arthropods. Environ Entomol 24:68–75

    Article  Google Scholar 

  • Lamb RJ (1992) Developmental rate of Acyrthosiphon pisum (Homoptera: Aphididae) at low temperatures: implication for estimating rate parameters for insects. Environ Entomol 21(1):10–19

    Article  Google Scholar 

  • Logan JA, Wolkind DJ, Hoyt SC, Tanigoshi LK (1976) An analytical model for description of temperature dependent rate phenomena in arthropods. Environ Entomol 5:1130–1140

    Article  Google Scholar 

  • Pfeil RM, Mumma RO (1993) Bioassay for evaluating attraction of the phorid fly, Megaselia halterata to compost colonised by the commercial mushroom Agaricus bisporus and to 1-octen-3-ol and 3-octanone. Entomol Exp Appl 69:137–144

    Article  CAS  Google Scholar 

  • Roy M, Brodeur J, Cloutier C (2002) Relationship between temperature and developmental rate of Stethorus punctillum (Col., Coccinelidae) and its prey Tetranychus mcdaniali (Acarina: Tetranychidae). Environ Entomol 31:177–187

    Article  Google Scholar 

  • Sánchez-Ramos I, Castañera P (2001) Development and survival of Tyrophagus putrescentiae (Acari: Acaridae) at constant temperatures. Environ Entomol 30:1082–1089

    Article  Google Scholar 

  • Sánchez-Ramos I, Álvarez-Alfageme F, Castañera P (2007) Development and survival of the cheese mites, Acarus farris and Tyrophagus neiswanderi (Acari: Acaridae), at constant temperatures and 90% relative humidity. J Stored Prod Res 43:64–72

    Article  Google Scholar 

  • SAS Institute (2009) JMP: a guide to statistical and data analysis, version 5.0.1. computer program, version By SAS Institute, Cary, NC

    Google Scholar 

  • Schoolfield RM, Sharpe PJH, Magnuson CE (1981) Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J Theor Biol 88:719–731

    Article  CAS  PubMed  Google Scholar 

  • Sharpe PJH, DeMichele DW (1977) Reaction kinetics of poikilotherm development. J Theor Biol 66:649–670

    Article  Google Scholar 

  • Shirvani Farsani N, Zamani AA, Abbasi S, Kheradmand K (2013) Effect of temperature and button mushroom varieties on life history of Lycoriella auripila (Diptera: Sciaridae). J Econ Entomol 106(1):115–123

    Article  Google Scholar 

  • SPSS (2007) SPSS base 16.0 user’s guide. SPSS Incorporation, Chicago, IL

    Google Scholar 

  • Taylor F (1982) Sensitivity of physiological time in arthropods to variation of its parameters. Environ Entomol 11:573–577

    Article  Google Scholar 

  • Vucetich JA, Peterson RO, Schaefer CL (2002) The effect of prey and predator densities on wolf predation. Ecology 83:3003–3013

    Article  Google Scholar 

  • Wagner TL, Olson RL, Willers JL (1991) Modeling arthropod development time. J Agric Entomol 8:251–270

    Google Scholar 

  • Wagner TL, Wu HI, Sharpe PJH, Schoolfield RM, Coulson RN (1984) Modeling insect development rates: a literature review and application of a biophysical model. Ann Entomol Soc Am 77:208–225

    Article  Google Scholar 

  • Walgama RS, Zalucki MP (2006) Evaluation of different models to describe egg and pupal development of Xyleborus fornicatus Eichh. (Coleoptera: Scolytidae), the shot-hole borer of tea in Sri Lanka. Insect Sci 13:109–118

    Article  Google Scholar 

  • Wang B, Ferro DN, Wu J, Wang S (2004) Temperature-dependent development and oviposition behavior of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae), a potential biological control agent for the European corn borer (Lepidoptera: Crambidae). Environ Entomol 33(4):787–793

    Article  Google Scholar 

  • White PF (1981) Spread of the mushroom disease Verticillium fungicola by Megaselia halterata (Diptera: Phoridae). Prot Ecol 3:17–24

    Google Scholar 

  • White PF (1985) Pests and pesticides. In: Flegg PB, Spencer DM, Wood DA (eds) The biology and technology of the cultivated mushroom. Wiley, Chichester UK, pp 279–293

    Google Scholar 

  • Zamani AA (2001) Identification of injurious dipterean pest of button mushroom (Agaricus bisporus) and study on some of their biological characteristics in Karaj, Iran. MSc thesis. Tehran, University of Tarbiat Modares

  • Zamani AA, Talebi AA, Fathipour Y, Baniameri V (2007) Effect of temperature on life history of Aphidius colemani and Aphidius matricariae (Hymenoptera: Braconidae), two parasitoids of Aphis gossypii and Myzus persicae (Homoptera: Aphididae). Environ Entomol 36(2):263–271

    Article  PubMed  Google Scholar 

  • Zhang XX (2002) Insect ecology and forecast. China Agriculture Press, pp 205–237

Download references

Acknowledgments

We are grateful to the Department of Plant Protection, Razi University, for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A A Zamani.

Additional information

Edited by Wesley AC Godoy – USP/USP

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzegar, S., Zamani, A.A., Abbasi, S. et al. Temperature-Dependent Development Modeling of the Phorid Fly Megaselia halterata (Wood) (Diptera: Phoridae). Neotrop Entomol 45, 507–517 (2016). https://doi.org/10.1007/s13744-016-0400-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-016-0400-3

Keywords

Navigation