Skip to main content
Log in

Entomopathogenic fungi and insect behaviour: from unsuspecting hosts to targeted vectors

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The behavioural response of an insect to a fungal pathogen will have a direct effect on the efficacy of the fungus as a biological control agent. In this paper we describe two processes that have a significant effect on the interactions between insects and entomopathogenic fungi: (a) the ability of target insects to detect and avoid fungal pathogens and (b) the transmission of fungal pathogens between host insects. The behavioural interactions between insects and entomopathogenic fungi are described for a variety of fungal pathogens ranging from commercially available bio-pesticides to non-formulated naturally occurring pathogens. The artificial manipulation of insect behaviour using dissemination devices to contaminate insects with entomopathogenic fungi is then described. The implications of insect behaviour on the use of fungal pathogens as biological control agents are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-mazra’awi MS, Shipp L, Broadbent B, Kevan P (2006) Biological control of Lygus lineolaris (Hemiptera: Miridae) and Frankliniella occidentalis (Thysanoptera: Thripidae) by Bombus impatiens (Hymenoptera: Apidae) vectored Beauveria bassiana in greenhouse sweet pepper. Biol Control 37:89–97

    Article  Google Scholar 

  • Baverstock J. (2004). Interactions between aphids, their insect and fungal natural enemies and the host plant. Ph.D. thesis, University of Nottingham, Loughborough, UK

  • Baverstock J, Alderson PG, Pell JK (2005a) Pandora neoaphidis transmission and aphid foraging behaviour. J Invertebr Pathol 90:73–76

    Article  CAS  PubMed  Google Scholar 

  • Baverstock J, Alderson PG, Pell JK (2005b) Influence of the aphid pathogen Pandora neoaphidis on the foraging behaviour of the aphid parasitoid Aphidius ervi. Ecol Entomol 30:665–672

    Article  Google Scholar 

  • Baverstock J, Baverstock KE, Clark SJ, Pell JK (2008) Transmission of Pandora neoaphidis in the presence of co-occurring arthropods. J Invertebr Pathol 98:356–359

    Article  CAS  PubMed  Google Scholar 

  • Baverstock J, Clark SJ, Alderson PG, Pell JK (2009) Intraguild interactions between the entomopathogenic fungus Pandora neoaphidis and an aphid predator and parasitoid at the population scale. J Invertebr Pathol 102:167–172

    Article  CAS  PubMed  Google Scholar 

  • Belmain SR, Simmonds MSJ, Blaney WM (2002) Influence of odor from wood-decaying fungi on host selection behavior of deathwatch beetle, Xestobium rufovillosum. J Chem Ecol 28:741–754

    Article  CAS  PubMed  Google Scholar 

  • Bird AE, Hesketh H, Cross JV, Copland M (2004) The common black ant, Lasius niger (Hymenoptera: Formicidae), as a vector of the entomopathogen Lecanicillium longisporum to rosy apple aphid, Dysaphis plantaginea (Homoptera: Aphididae). Biocontrol Sci Tech 14:757–767

    Article  Google Scholar 

  • Boucias DG, Stokes C, Storey G, Pendland JC (1996) The effects of imidacloprid on the termite Reticulitermes flavipes and its interaction with the mycopathogen Beauveria bassiana. Pflanzenschutz-Nachrichten Bayer (English ed.) 49:103–144

    Google Scholar 

  • Broza M, Pereira RM, Stimac JL (2001) The non-susceptibility of soil Collembola to insect pathogens and their potential as scavengers of microbial pesticides. Pedobiologia 45:523–534

    Article  Google Scholar 

  • Bush AO, Fernandez JC, Esch GW, Seed JR (2001) Parasitism: the diversity and ecology of animal parasites. Cambridge University Press, Cambridge

    Google Scholar 

  • Carreck NL, Butt TM, Clark SJ, Ibrahim L, Isger EA, Pell JK, Williams IH (2007) Honey bees can disseminate a microbial control agent to more than one inflorescence pest of oilseed rape. Biocontrol Sci Tech 17:179–191

    Article  Google Scholar 

  • Chen C, Feng MG (2002) Evidence for transmission of aphid-pathogenic fungi by migratory flight of Myzus persicae alates. Chin Sci Bull 47:1987–1989

    Article  Google Scholar 

  • Chen C, Feng MG (2004a) Observation on the initial inoculum source and dissemination of Entomophthorales-caused epizootics in populations of cereal aphids. Sci China C Life Sci 47:38–43

    Article  Google Scholar 

  • Chen C, Feng MG (2004b) Sitobion avenae alatae infected by Pandora neoaphidis: their flight ability, post-flight colonization, and mycosis transmission to progeny colonies. J Invertebr Pathol 86:117–123

    Article  PubMed  Google Scholar 

  • Chen C, Feng MG (2006) Experimental simulation of transmission of an obligate aphid pathogen with aphid flight dispersal. Environ Microbiol 8(1):69–76

    Article  PubMed  Google Scholar 

  • Chen B, Li ZY, Feng MG (2008) Occurrence of entomopathogenic fungi in migratory alate aphids in Yunnan Province of China. BioControl 53:317–326

    Article  Google Scholar 

  • Chouvenc T, Su NY, Elliott ML (2008) Interaction between the subterranean termite Reticulitermes flavipes (Isoptera: Rhinotermitidae) and the entomopathogenic fungus Metarhizium anisopliae in foraging arenas. J Econ Entomol 101:885–893

    Article  CAS  PubMed  Google Scholar 

  • Cory JS, Ericsson JD (2009) Fungal entomopathogens in a tritrophic context. BioControl. doi:10.1007/s10526-009-9247-4 (this SI)

  • Cory JS, Hoover K (2006) Plant-mediated effects in insect-pathogen interactions. Trends Ecol Evol 21:278–286

    Article  PubMed  Google Scholar 

  • DeKesel A (1995) Relative importance of direct and indirect infection in the transmission of Laboulbenia slackensis (Ascomycota, Laboulbeniales). Belg J Bot 128:124–130

    Google Scholar 

  • Dowd PF, Vega FE (2003) Autodissemination of Beauveria bassiana by sap beetles (Coleoptera: Nitidulidae) to overwintering sites. Biocontrol Sci Tech 13:65–75

    Article  Google Scholar 

  • Dromph KM (2001) Dispersal of entomopathogenic fungi by collembolans. Soil Biol Biochem 33:2047–2051

    Article  CAS  Google Scholar 

  • Dromph KM (2003) Collembolans as vectors of entomopathogenic fungi. Pedobiologia 47:245–256

    Article  Google Scholar 

  • Dromph KM, Vestergaard S (2002) Pathogenicity and attractiveness of entomopathogenic hyphomycete fungi to collembolans. Appl Soil Ecol 21:197–210

    Article  Google Scholar 

  • Ekesi S, Shah PA, Clark SJ, Pell JK (2005) Conservation biological control with the fungal pathogen Pandora neoaphidis: implications of aphid species, host plant and predator foraging. Agric For Entomol 7:21–30

    Article  Google Scholar 

  • Fäldt J, Jonsell M, Nordlander G, Borg-Karlson AK (1999) Volatiles of bracket fungi Fomitopsis pinicola and Fomes fomentarius and their functions as insect attractants. J Chem Ecol 25:567–590

    Article  Google Scholar 

  • Feng MG, Chen C, Chen B (2004) Wide dispersal of aphid-pathogenic Entomophthorales among aphids relies upon migratory alates. Environ Microbiol 6:510–516

    Article  PubMed  Google Scholar 

  • Feng MG, Chen C, Shang SW, Ying SH, Shen ZC, Chen XX (2007) Aphid dispersal flight disseminates fungal pathogens and parasitoids as natural control agents of aphids. Ecol Entomol 32:97–104

    Article  Google Scholar 

  • Flower E (2002) The Trojan ant: infecting aphids with the fungus V. lecanii using the ant Lasius niger. BSc thesis, Imperial College of Science, Technology and Medicine, Wye, UK

  • Fransen JJ, van Lenteren JC (1993) Host selection and survival of the parasitoid Encarsia formosa on greenhouse whitefly, Trialeurodes vaporariorum, in the presence of hosts infected with the fungus Aschersonia aleyrodis. Entomol Exp Appl 69:239–249

    Article  Google Scholar 

  • Furlong MJ, Pell JK (2001) Horizontal transmission of entomopathogenic fungi by the diamondback moth. Biol Control 22:288–299

    Article  Google Scholar 

  • Furlong MJ, Pell JK, Choo OP, Rahman SA (1995) Field and laboratory evaluation of a sex-pheromone trap for the autodissemination of the fungal entomopathogen Zoophthora radicans (Entomophthorales) by the diamond-back moth, Plutella xylostella (Lepidoptera, Yponomeutidae). Bull Entomol Res 85:331–337

    Article  Google Scholar 

  • Fuxa JR, Tanada Y (1987) Epidemiological concepts applied to epizootiology. In: Fuxa JR, Tanada Y (eds) Epizootiology of insect diseases. Wiley, New York, pp 3–21

    Google Scholar 

  • Grace JK, Zoberi MH (1992) Experimental evidence for transmission of Beauveria bassiana by Reticulitermes flavipes workers (Isoptera, Rhinotermitidae). Sociobiology 20:23–28

    Google Scholar 

  • Hajek AE, St Leger RJ (1994) Interactions between fungal pathogens and insect hosts. Annu Rev Entomol 39:293–322

    Article  Google Scholar 

  • Huang ZH, Feng MG, Chen XX, Liu SS (2008) Pathogenic fungi and parasitoids of aphids present in air captures of migratory alates in the low-latitude plateau of Yunnan, China. Environ Entomol 37:1264–1271

    Article  PubMed  Google Scholar 

  • Inyang EN, Butt TM, Ibrahim L, Clark SJ, Pye BT, Beckett A, Archer S (1998) The effect of plant growth and topography on the acquisition of conidia of the insect pathogen Metarhizium anisopliae by larvae of Phaedon cochleariae. Mycol Res 102:1365–1374

    Article  Google Scholar 

  • Jones WE, Grace JK, Tamashiro M (1996) Virulence of seven isolates of Beauveria bassiana and Metarhizium anisopliae to Coptotermes formosanus (Isoptera: Rhinotermitidae). Environ Entomol 25:481–487

    Google Scholar 

  • Kaaya GP, Okech MA (1990) Horizontal transmission of mycotic infection in adult tsetse, Glossina morsitans-morsitans. Entomophaga 35:589–600

    Article  Google Scholar 

  • Kapongo JP, Shipp L, Kevan P, Broadbent B (2008a) Optimal concentration of Beauveria bassiana vectored by bumble bees in relation to pest and bee mortality in greenhouse tomato and sweet pepper. BioControl 53:797–812

    Article  Google Scholar 

  • Kapongo JP, Shipp L, Kevan P, Sutton JC (2008b) Co-vectoring of Beauveria bassiana and Clonostachys rosea by bumble bees (Bombus impatiens) for control of insect pests and suppression of grey mould in greenhouse tomato and sweet pepper. Biol Control 46:508–514

    Article  Google Scholar 

  • Klinger E, Groden E, Drummond F (2006) Beauveria bassiana horizontal infection between cadavers and adults of the Colorado potato beetle, Leptinotarsa decemlineata (Say). Environ Entomol 35:992–1000

    Article  Google Scholar 

  • Kreutz J, Zimmermann G, Vaupel O (2004) Horizontal transmission of the entomopathogenic fungus Beauveria bassiana among the spruce bark beetle, Ips typographus (Col., Scolytidae) in the laboratory and under field conditions. Biocontrol Sci Technol 14:837–848

    Article  Google Scholar 

  • Long DW, Groden E, Drummond FA (2000) Horizontal transmission of Beauveria bassiana (Bals.) Vuill. Agric For Entomol 2:11–17

    Article  Google Scholar 

  • Lord JC (2001) Response of the wasp Cephalonomia tarsalis (Hymenoptera: Bethylidae) to Beauveria bassiana (Hyphomycetes: Moniliales) as free conidia or infection in its host, the sawtoothed grain beetle, Oryzaephilus surinamensis (Coleoptera: Silvanidae). Biol Control 21:300–304

    Article  Google Scholar 

  • Ludwig SW, Oetting RD (2002) Efficacy of Beauveria bassiana plus insect attractants for enhanced control of Frankliniella occidentalis (Thysanoptera: Thripidae). Fla Entomol 85:270–272

    Article  Google Scholar 

  • Meyling NV, Pell JK (2006) Detection and avoidance of an entomopathogenic fungus by a generalist insect predator. Ecol Entomol 31:162–171

    Article  Google Scholar 

  • Meyling NV, Pell JK, Eilenberg J (2006) Dispersal of Beauveria bassiana by the activity of nettle insects. J Invertebr Pathol 93:121–126

    Article  PubMed  Google Scholar 

  • Milner RJ (1997) Prospects for biopesticides for aphid control. Entomophaga 42:227–239

    Article  Google Scholar 

  • Myles TG (2002) Alarm, aggregation, and defense by Reticulitermes flavipes in response to a naturally occurring isolate of Metarhizium anisopliae. Sociobiology 40:243–255

    Google Scholar 

  • Ormond E (2007) The overwintering interactions of the seven spot ladybird (Coccinella septempunctata) and the entomopathogenic fungus Beauveria bassiana. Ph.D. thesis, Anglia Ruskin University, Cambridge

  • Pell JK, Vandenberg JD (2002) Interactions among the aphid Diuraphis noxia, the entomopathogenic fungus Isaria fumosoroseus and the coccinellid Hippodamia convergens. Biocontrol Sci Tech 12:217–224

    Article  Google Scholar 

  • Pell JK, Wilding N, Player AL, Clark SJ (1993) Selection of an isolate of Zoopthora radicans (Zygomycetes, Entomophthorales) for biocontrol of the diamondback moth Plutella xylostella (Lepidoptera, Yponomeutidae). J Invertebr Pathol 61:75–80

    Article  Google Scholar 

  • Pell JK, Pluke R, Clark SJ, Kenward MG, Alderson PG (1997) Interactions between two aphid natural enemies, the entomopathogenic fungus Erynia neoaphidis Remaudiere & Hennebert (Zygomycetes: Entomophthorales) and the predatory beetle Coccinella septempunctata L. (Coleoptera: Coccinellidae). J Invertebr Pathol 69:261–268

    Article  Google Scholar 

  • Pell JK, Tydeman C, MaCartney A (1998) Impact of rainfall on the persistence and transmission of Erynia neoaphidis. IOBC/WPRS Bull 21:49

    Google Scholar 

  • Powell W, Wilding N, Brobyn PJ, Clark SJ (1986) Interference between parasitoids (hym, Aphididae) and fungi (Entomophthorales) attacking cereal aphids. Entomophaga 31:293–302

    Article  Google Scholar 

  • Quesada-Moraga E, Martin-Carballo I, Garrido-Jurado I, Santiago-Alvarez C (2008) Horizontal transmission of Metarhizium anisopliae among laboratory populations of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Biol Control 47:115–124

    Article  Google Scholar 

  • Quintela ED, McCoy CW (1998) Conidial attachment of Metarhizium anisopliae and Beauveria bassiana to the larval cuticle of Diaprepes abbreviatus (Coleoptera: Curculionidae) treated with imidacloprid. J Invertebr Pathol 72:220–230

    Article  PubMed  Google Scholar 

  • Rath AC (2000) The use of entomopathogenic fungi for control of termites. Biocontrol Sci Tech 10:563–581

    Article  Google Scholar 

  • Renn N, Bywater AF, Barson G (1999) A bait formulated with Metarhizium anisopliae for the control of Musca domestica L-(Dipt., Muscidae) assessed in large-scale laboratory enclosures. J Appl Entomol 123:309–314

    Article  Google Scholar 

  • Robert Y (1987) Dispersion and migration. In: Minks AK, Harrewijn P (eds) Aphids, their biology, natural enemies and control, vol A. Elsevier, Amsterdam, pp 299–313

    Google Scholar 

  • Roditakis E, Couzin ID, Balrow K, Franks NR, Charnley AK (2000) Improving secondary pick up of insect fungal pathogen conidia by manipulating host behaviour. Ann Appl Biol 137:329–335

    Article  Google Scholar 

  • Roy HE, Pell JK (2000) Interactions between entomopathogenic fungi and other natural enemies: implications for biological control. Biocontrol Sci Tech 10:737–752

    Article  Google Scholar 

  • Roy HE, Pell JK, Clark SJ, Alderson PG (1998) Implications of predator foraging on aphid pathogen dynamics. J Invertebr Pathol 71:236–247

    Article  CAS  PubMed  Google Scholar 

  • Roy HE, Pell JK, Alderson PG (1999) Effects of fungal infection on the alarm response of pea aphids. J Invertebr Pathol 74:69–75

    Article  CAS  PubMed  Google Scholar 

  • Roy HE, Pell JK, Alderson PG (2001) Targeted dispersal of the aphid pathogenic fungus Erynia neoaphidis by the aphid predator Coccinella septempunctata. Biocontrol Sci Tech 11:99–110

    Article  Google Scholar 

  • Roy HE, Steinkraus DC, Eilenberg J, Hajek AE, Pell JK (2006) Bizarre interactions and endgames: entomopathogenic fungi and their arthropod hosts. Annu Rev Entomol 51:331–357

    Article  CAS  PubMed  Google Scholar 

  • Roy HE, Brown PMJ, Rothery P, Ware RL, Majerus MEN (2008) Interactions between the fungal pathogen Beauveria bassiana and three species of coccinellid: Harmonia axyridis, Coccinella septempunctata and Adalia bipunctata. BioControl 53:265–276

    Article  Google Scholar 

  • Shah PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61:413–423

    CAS  PubMed  Google Scholar 

  • Shah FA, Ansari MA, Prasad M, Butt TM (2007) Evaluation of black vine weevil (Otiorhynchus sulcatus) control strategies using Metarhizium anisopliae with sublethal doses of insecticides is disparate horticultural growing media. Biol Control 40:246–252

    Article  CAS  Google Scholar 

  • Shanley RP, Hajek AE (2008) Environmental contamination with Metarhizium anisopliae from fungal bands for control of the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae). Biocontrol Sci Tech 18:109–120

    Article  Google Scholar 

  • Shimazu M (2004) A novel technique to inoculate conidia of entomopathogenic fungi and its application for investigation of susceptibility of the Japanese pine sawyer, Monochamus alternatus, to Beauveria bassiana. Appl Entomol Zool 39:485–490

    Article  Google Scholar 

  • Shimizu S, Yamaji M (2003) Effect of density of the termite, Reticulitermes speratus Kolbe (Isoptera: Rhinotermitidae), on the susceptibilities to Metarhizium anisopliae. Appl Entomol Zool 38:125–130

    Article  Google Scholar 

  • Simelane DO, Steinkraus DC, Kring TJ (2008) Predation rate and development of Coccinella septempunctata L. influenced by Neozygites fresenii-infected cotton aphid prey. Biol Control 44:128–135

    Article  Google Scholar 

  • Smith SM, Moore D, Karanja LW, Chandi EA (1999) Formulation of vegetable fat pellets with pheromone and Beauveria bassiana to control the larger grain borer, Prostephanus truncatus (Horn). Pest Sci 55:711–718

    Article  CAS  Google Scholar 

  • Staples JA, Milner RJ (2000) A laboratory evaluation of the repellency of Metarhizium anisopliae conidia to Coptotermes lacteus (Isoptera: Rhinotermitidae). Sociobiology 36:133–148

    Google Scholar 

  • Steinkraus DC (2006) Factors affecting transmission of fungal pathogens of aphids. J Invertebr Pathol 92:125–131

    Article  PubMed  Google Scholar 

  • Sullivan BT, Berisford CW (2004) Semiochemicals from fungal associates of bark beetles may mediate host location behavior of parasitoids. J Chem Ecol 30:703–717

    Article  CAS  PubMed  Google Scholar 

  • Sun JZ, Fuxa JR, Richter A, Ring D (2008) Interactions of Metarhizium anisopliae and tree-based mulches in repellence and mycoses against Coptotermes formosanus (Isoptera: Rhinotermitidae). Environ Entomol 37:755–763

    Article  CAS  PubMed  Google Scholar 

  • Thompson SR, Brandenburg RL (2005) Tunnelling responses of mole crickets (Orthoptera: Gryllotalpidae) to the entomopathogenic fungus, Beauveria bassiana. Environ Entomol 34:140–147

    Article  Google Scholar 

  • Toledo J, Campos SE, Flores S, Liedo P, Barrera JF, Villasenor A, Montoya P (2007) Horizontal transmission of Beauveria bassiana in Anastrepha ludens (Diptera: Tephritidae) under laboratory and field cage conditions. J Econ Entomol 100:291–297

    Article  PubMed  Google Scholar 

  • Tsutsumi T, Teshiba M, Yamanaka M, Ohira Y, Higuchi T (2003) An autodissemination system for the control of brown winged green bug, Plautia crossota stali Scott (Heteroptera: Pentatomidae) by an entomopathogenic fungus, Beauveria bassiana E-9102 combined with aggregation pheromone. Jpn J Appl Entomol Zool 47:159–163

    Article  Google Scholar 

  • Vega FE, Dowd PF, Bartelt RJ (1995) Dissemination of microbial agents using an autoinoculating device and several insect species as vectors. Biol Control 5:545–552

    Article  Google Scholar 

  • Vega FE, Dowd PF, Lacey LA, Pell JK, Jackson DM, Klein MG (2000) Dissemination of beneficial microbial agents by insects. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Kluwer, London, pp 153–177

    Google Scholar 

  • Vickers RA, Furlong MJ, White A, Pell JK (2004) Initiation of fungal epizootics in diamondback moth populations within a large field cage: proof of concept for auto-dissemination. Entomol Exp Appl 111:7–17

    Article  Google Scholar 

  • Villani MG, Krueger SR, Schroeder PC, Consolie F, Consolie NH, Preston-Wilsey LM, Roberts DW (1994) Soil application effects of Metarhizium anisopliae on Japanese-beetle (Coleoptera, Scarabaeidae) behaviour and survival in turfgrass microcosms. Environ Entomol 23:502–513

    Google Scholar 

  • Villani MG, Allee LL, Preston-Wilsey L, Consolie N, Xia Y, Brandenburg RL (2002) Use of radiography and tunnel castings for observing mole cricket (Orthoptera: Gryllotalpidae) behavior in soil. Am Entomol 48:42–50

    Google Scholar 

  • Visser S, Parkinson D, Hassall M (1987) Fungi associated with Onychiurus subtenuis (Collembola) in an Aspen woodland. Can J Bot 65:635–642

    Article  Google Scholar 

  • Wang CL, Powell JE (2004) Cellulose bait improves the effectiveness of Metarhizium anisopliae as a microbial control of termites (Isoptera: Rhinotermitidae). Biol Control 30:523–529

    Article  Google Scholar 

  • Yasuda K (1999) Auto-infection system for the sweet potato weevil, Cylas formicarius (Fabricius) (Coleoptera: Curculionidae) with entomopathogenic fungi, Beauveria bassiana using a modified sex pheromone trap in the field. Appl Entomol Zool 34:501–505

    Google Scholar 

  • Zhang GZ, Feng MG, Chen C, Ying SH (2007) Opportunism of Conidiobolus obscurus stems from depression of infection in situ to progeny colonies of host alatae as disseminators of the aphid-pathogenic fungus. Environ Microbiol 9:859–868

    Article  PubMed  Google Scholar 

  • Zimmermann G, Bode E (1983) Investigations on the dispersal of the entomopathogenic fungus Metarhizium-anisopliae (Fungi Imperfecti, Moniliales) by soil arthropods. Pedobiologia 25:65–71

    Google Scholar 

Download references

Acknowledgments

Jason Baverstock and Judtih K Pell are supported by the Department for Environment, Food and Rural Affairs of the United Kingdom (Defra). Rothamsted Research is an Institute of the Biotechnology and Biological Sciences Research Council of the United Kingdom. The Centre for Ecology & Hydrology is an institute of the Natural Environment Research Council of the United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Baverstock.

Additional information

Handling Editor: Eric Wajnberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baverstock, J., Roy, H.E. & Pell, J.K. Entomopathogenic fungi and insect behaviour: from unsuspecting hosts to targeted vectors. BioControl 55, 89–102 (2010). https://doi.org/10.1007/s10526-009-9238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-009-9238-5

Keywords

Navigation