Skip to main content
Log in

Characterization of Bacillus thuringiensis isolates from Argentina that are potentially useful in insect pest control

  • OriginalPaper
  • Published:
BioControl Aims and scope Submit manuscript

Abstract

In order to find novel strains of Bacillus thuringiensis that are toxic to some of the major pests that impact economically important crops in Argentina, we initiated a search for B. thuringiensis isolates native to Argentina. We succeeded in assembling a collection of 41 isolates, some of which show a high potential to be used in biological control programs against lepidopteran and coleopteran pests. About 90% of the strains showed toxicity against Spodoptera frugiperda and Anticarsia gemmatalis, two important lepidopteran pests in Argentina. It is noteworthy that only one of these strains contained a cry1-type gene, while another isolate showed a dual toxicity against the lepidopteran and coleopteran insects assayed. Genetic characterization of the strains suggests that the collection likely harbors novel Cry proteins that may be of potential use in biological insect pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beegle C.C., T. Yamamoto, 1992. History of Bacillus thuringiensis Berliner research and development. Can. J. Entomol. 124:587–616.

    Article  Google Scholar 

  • Ben-Dov E., Zaritsky A., Dahan E., Barak Z., Sinai R., Manasherob R., Khameaev A., Troitskaya E., Dubitsky A., Berezina N., Y. Margalith, 1997. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Appl. Environ. Microbiol. 63:4883–4890.

    PubMed  CAS  Google Scholar 

  • Benintende G.B., Lopez-Meza J.E., Cozzi J.G., J.E. Ibarra, 1999. Novel non-toxic isolates of Bacillus thuringiensis. Lett. Appl. Microbiol. 29:151–155.

    Article  Google Scholar 

  • Benintende G.B., Lopez-Meza J.E., Cozzi J.G., Piccinetti C.F., J.E. Ibarra, 2000. Characterization of INTA 51-3, a new atypical strain of Bacillus thuringiensis from Argentina. Curr. Microbiol. 41:396–401.

    Article  PubMed  CAS  Google Scholar 

  • Bernhard K., Jarrett P., Meadows M., Butt J., Ellis D.J., Roberts G.M., Pauli S., Rodgers P., H.D. Burges, 1997. Natural isolates of Bacillus thuringiensis: worldwide distribution, characterization, and activity against insect pests. J. Invertebr. Pathol. 70:59–68.

    Article  Google Scholar 

  • Berón C.M., Curatti L., G.L. Salerno, 2005. New strategy for identification of novel cry-type genes from Bacillus thuringiensis strains. Appl. Environ. Microbiol. 71:761–765.

    Article  PubMed  CAS  Google Scholar 

  • Bohorova N., Maciel A.M., Brito R.M., Aguilar L., Ibarra J.E., D. Hoisington 1996. Selection and characterization of Mexican strains of Bacillus thuringiensis active against four major lepidopteran maize pest. Entomophaga 41:153–165.

    Google Scholar 

  • Bravo A., Sarabia S., Lopez L., Ontiveros H., Abarca C., Ortíz A., Ortíz M., Lina L., Villalobos F.J., Peña G., Nuñez-Valdez M.E., Soberón M., R. Quintero, 1998. Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl. Environ. Microbiol. 64:4965–4972.

    PubMed  CAS  Google Scholar 

  • Burges H.D., J.A. Hurst, 1977. Ecology of Bacillus thuringiensis in storage moths. J. Invertebr. Pathol. 30:131–139.

    Article  Google Scholar 

  • Carozzi N.B., Kramer V.C., Warren G.W., Evola S., M.G. Koziel, 1991. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl. Environ. Microbiol. 57:3057–3061.

    PubMed  CAS  Google Scholar 

  • Chak K.-F., Chao D.-C., Tseng M.-Y., Kao S.-S, Tuan S.-J., T.-Y. Feng, 1994. Determination and distribution of cry-type genes of Bacillus thuringiensis isolates from Taiwan. Appl. Environ. Microbiol. 60:2415–2420.

    PubMed  CAS  Google Scholar 

  • Chaufaux J., Marchal M., Gilois N., Jehanno I., C. Buisson, 1997. Investigation of natural strains of Bacillus thuringiensis in different biotypes throughout the world. Can. J. Microbiol. 43:337–343.

    Article  CAS  Google Scholar 

  • Chilcott C.N., P.J. Wigley, 1993. Isolation and toxicity of Bacillus thuringiensis from soil and insect habitats in New Zealand. J. Invertebr. Pathol. 61:244–247.

    Article  Google Scholar 

  • Consolo V.F., Salerno G.L., C.M. Berón C.M, 2003. Laboratory screening of entomopathogenic fungi and identification of a Beauveria bassiana isolate with potential as biocontrol agent of Diabrotica speciosa. BioControl 48:705–712.

    Article  Google Scholar 

  • Damgaard P.H., Abdel-Hameed A., Eilenberg J., P. Smits, 1998. Natural occurrence of Bacillus thuringiensis on grass foliage. World J. Microbiol. Biotechnol. 14:239–242

    Article  Google Scholar 

  • Delécluse A., Charles J.F., Klier A., G. Rapoport, 1991. Deletion by in vivo recombination shows that the 28-kilodalton cytolytic polypeptide from Bacillus thuringiensis subsp. israelensis is not essential for mosquitocidal activity. J. Bacteriol. 173:3374–3381.

    PubMed  Google Scholar 

  • DeLucca A.J., II, Palmgren M.S., H. De Barjac, 1984. A new serovar of Bacillus thuringiensis from grain dust: Bacillus thuringiensis serovar colmeri (serovar 21). J. Invertebr. Pathol. 43:437–438.

    Article  Google Scholar 

  • DeLucca A.J. II, Simonson J. and A.D. Larson, 1981. Bacillus thuringiensis distribution in soils of the United States. Can. J. Microbiol. 27:865–870.

    Article  PubMed  Google Scholar 

  • de Maagd R.A., Bravo A. and N. Crickmore, 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17:193–199.

    Article  PubMed  Google Scholar 

  • de Maagd R.A., Bravo A., Berry C., Crickmore N. and H. Schnepf, 2003. Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu. Rev. Genet. 37:409–433.

    Article  PubMed  CAS  Google Scholar 

  • Dias S.C., Sagardoy M.A., Silva S.F. and J.M.C.S. Dias, 1999. Characterization and pathogenic evaluation of Bacillus thuringiensis and Bacillus sphaericus isolates from Argentinean soils. BioControl 44:59–71.

    Article  Google Scholar 

  • Feitelson J.S., Payne J. and L. Kim, 1992. Bacillus thuringiensis: insects and beyond. Biotechnology 10:271–275.

    Article  Google Scholar 

  • Forsyth G. and N.A Logan, 2000. Isolation of Bacillus thuringiensis from Northern Victoria Land, Antarctica. Lett. Appl. Microbiol. 30:263–266.

    Article  PubMed  CAS  Google Scholar 

  • Franco-Rivera A., Benintende G., Cozzi J., Baizabal-Aguirre V.M., Valdez-Alarcon J.J. and J.E. Lopez-Meza, 2004. Molecular characterization of Bacillus thuringiensis strains from Argentina. Antonie Van Leeuwenhoek 86:87–92.

    Article  PubMed  CAS  Google Scholar 

  • Hastowo S., Lay B.W. and M. Ohba, 1992. Naturally occurring Bacillus thuringiensis in Indonesia. J. Appl. Bacteriol. 73:108–113.

    Google Scholar 

  • Hossain M.A., Ahmed S. and S. Hoque S, 1997. Abundance and distribution of Bacillus thuringiensis in the agricultural soil of Bangladesh. J. Invertebr. Pathol. 70:221–225.

    Article  PubMed  Google Scholar 

  • Ibarra J.E., del Rincón M.C., Orduz S., Noriega D., Benintende G., Monnerat R., Regis L., de Oliveira C.M., Lanz H., Rodriguez M.H., Sanchez J., Pena G. and A. Bravo, 2003. Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species. Appl. Environ. Microbiol. 69:5269–5274

    Article  PubMed  CAS  Google Scholar 

  • Joung, K.B., J.C. and J.C. Côte, 2000. A review of the environmental impacts of the microbial insecticide Bacillus thuringiensis. Technical bulletin N° 29. Horticultural Research and Development Center. http://www.res2.agr.ca/stjean/crdh.htlm.

  • Lacey L.A., Frutos R., Kaya H.K. and P. Vail, 2001. Insect pathogens as biological control agents: do they have a future? Biol. Control. 21:230–248.

    Article  Google Scholar 

  • Laemmli U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 15:680–685.

    Article  Google Scholar 

  • Martin P.A.W. and R.S. Travers, 1989. World wide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55:2437–2442.

    PubMed  Google Scholar 

  • Meadows M.P., Ellis D.J., Butt J., Jarret P. and D. Burges, 1992. Distribution, frequency, and diversity of B. thuringiensis in an animal feed mill. Appl. Environ. Microbiol. 58:1344–1350.

    PubMed  Google Scholar 

  • Nester, E.W., L.S. Thomashow, M. Metz and M. Gordon, 2002. 100 Years of Bacillus thuringiensis: a critical scientific assessment. ASM. [online.] http://www.asmusa.org

  • Parra, J.R.P., 1998. Criação de insetos para estudos com patógenos. In: Sérgio Batista Alves (ed), Controle Microbiano de Insetos. ESALQ/USP, Brazil, pp. 1015–1037.

  • Renart, J. and I.V. Sandoval, 1984. Western blots. In: W.B. Jacoby (ed), Methods in Enzymology, vol. 104. Academic Press, Orlando, pp. 455–460.

  • Salerno G., Pagnussat G. and H. Pontis, 1998. Studies of sucrose–phosphate synthase from rice leaves. Cell. Mol. Biol. 44:407–416.

    PubMed  CAS  Google Scholar 

  • Sambrook J. and D.W. Russell, 2001. Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D.R. and D.H. Dean, 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:775–806.

    PubMed  CAS  Google Scholar 

  • Smith R.A. and G.A. Couche, 1991. The phylloplane as a source of Bacillus thuringiensis variants. Appl. Environ. Microbiol. 57:311–315.

    PubMed  Google Scholar 

  • Uribe D., Martinez W. and J. Cerón , 2003. Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. J. Invertebr. Pathol. 82:119–127.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ed Etxeberria (Citrus Research Center, University of Florida) and Dr. Robert Igarashi (Department of Plant and Microbial Biology, University of California, Berkeley) for their critical reading of the manuscript, and Dr. Guillermo Cabrera Walsh (South American Biological Control Laboratory – Hurlingham, Argentina-USDA), Dr. Juan José García (CEPAVE, Argentina) and Dr. Rose Monnerat (CENARGEN – EMBRAPA, Brasilia, Brazil) for providing insect larvae. This work was supported by grants from the Universidad Nacional de Mar del Plata and FIBA, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corina M. Berón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berón, C.M., Salerno, G.L. Characterization of Bacillus thuringiensis isolates from Argentina that are potentially useful in insect pest control. BioControl 51, 779–794 (2006). https://doi.org/10.1007/s10526-006-9018-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-006-9018-4

Keywords

Navigation