Skip to main content
Log in

Circadian clocks of faster developing fruit fly populations also age faster

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Age-related changes in circadian rhythms have been studied in several model organisms including fruit flies Drosophila melanogaster. Although a general trend of period (τ) lengthening, reduction in rhythm strength and eventual arrhythmicity with increasing age has been reported, age-related changes in circadian rhythms have seldom been examined in the light of differences in the rate of ageing of the organism. We used four populations of fruit flies D. melanogaster which were selected to develop faster (as pre-adults) to ask if circadian clocks of these flies age faster than their controls. After 55 generations, the selected populations (FD) started developing ~29-h (~12 %) faster than the controls (BD) while their circadian clocks exhibited τ ~0.5-h shorter than the controls. We assayed the activity/rest behaviour and adult lifespan of virgin males from the FD and BD populations under constant dark (DD) conditions. The results revealed that FD flies live significantly shorter, and markers of ageing of circadian rhythms set-in earlier in the FD flies compared to the BD controls, which suggests that circadian clocks of faster developing flies age faster than controls. These results can be taken to suggest that ageing of circadian clocks in fruit flies D. melanogaster is a function of its physiological rather than chronological age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bushey D, Hughes KA, Tononi G, Cirelli C (2010) Sleep, aging, and lifespan in Drosophila. BMC Neurosci 11:56

    Article  PubMed Central  PubMed  Google Scholar 

  • Carskadon MA, Brown ED, Dement WC (1982) Sleep fragmentation in the elderly: relationship to daytime sleep tendency. Neurobiol Aging 3:321–327

    Article  CAS  PubMed  Google Scholar 

  • Chippindale AK, Hoang DT, Service PM, Rose MR (1994) The evolution of development in Drosophila melanogaster selected for postponed senescence. Evolution 48:1880–1899

    Article  Google Scholar 

  • Chippindale AK, Alipaz JA, Rose MR (2004) Experimental evolution of accelerated development in Drosophila. 2. Adult fitness and the fast development syndrome. In: Rose MR, Passananti HB, Matos M (eds) Methuselah flies: a case study in the evolution of aging. World Scientific Publishing, Singapore, pp 413–435

    Chapter  Google Scholar 

  • Cook-Wiens E, Grotewiel MS (2002) Dissociation between functional senescence and oxidative stress resistance in Drosophila. Exp Gerontol 37:1347–1357

    Article  CAS  PubMed  Google Scholar 

  • Davidson AJ, Sellix MT, Daniel J, Yamazaki S, Menaker M, Block GD (2006) Chronic jet-lag increases mortality in aged mice. Curr Biol 16:R914–R916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    Article  CAS  PubMed  Google Scholar 

  • Driver C (2000) The circadian clock in old Drosophila melanogaster. Biogerontology 1:157–162

    Article  CAS  PubMed  Google Scholar 

  • Ferrie JE, Shipley MJ, Cappuccio FP, Brunner E, Miller MA, Kumari M, Marmot MG (2007) A prospective study of change in sleep duration: associations with mortality in the Whitehall II cohort. Sleep 30:1659–1666

    PubMed  Google Scholar 

  • Gargano JW, Martin I, Bhandari P, Grotewiel MS (2005) Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Exp Gerontol 40:386–395

    Article  PubMed  Google Scholar 

  • Helfand SL, Rogina B (2003) Genetics of aging in the fruit fly, Drosophila melanogaster. Annu Rev Genet 37:329–348

    Article  CAS  PubMed  Google Scholar 

  • Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A, Pack AI (2000) Rest in Drosophila is a sleep-like state. Neuron 25:129–138

    Article  CAS  PubMed  Google Scholar 

  • Hendricks J, Lu S, Kume K, Yin J, Yang Z, Sehgal A (2003) Gender dimorphism in the role of cycle (BMAL1) in rest, rest regulation, and longevity in Drosophila melanogaster. J Biol Rhythms 18:12–25

    Article  CAS  PubMed  Google Scholar 

  • Huang YL, Liu RY, Wang QS, Van Someren EJ, Xu H, Zhou JN (2002) Age-associated difference in circadian sleep-wake and rest-activity rhythms. Physiol Behav 76:597–603

    Article  CAS  PubMed  Google Scholar 

  • Hublin C, Partinen M, Koskenvuo M, Kaprio J (2007) Sleep and mortality: a population-based 22-year follow-up study. Sleep 30:1245–1253

    PubMed  Google Scholar 

  • Hurd MW, Ralph M (1998) The significance of circadian organization for longevity in the golden hamster. J Biol Rhythms 13:430–436

    Article  CAS  PubMed  Google Scholar 

  • Jones MA, Grotewiel M (2011) Drosophila as a model for age-related impairment in locomotor and other behaviors. Exp Gerontol 46:320–325

    Article  PubMed Central  PubMed  Google Scholar 

  • Klarsfeld A, Rouyer F (1998) Effects of circadian mutations and LD periodicity on the life span of Drosophila melanogaster. J Biol Rhythms 13:471–478

    Article  CAS  PubMed  Google Scholar 

  • Koh K, Evans JM, Hendricks JC, Sehgal A (2006) A Drosophila model for age-associated changes in sleep:wake cycles. Proc Natl Acad Sci USA 103:13843–13847

    Article  CAS  PubMed  Google Scholar 

  • Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev 20:1868–1873

    Article  CAS  PubMed  Google Scholar 

  • Konopka RJ, Pittendrigh CS, Orr D (1989) Reciprocal behaviour associated with altered homeostasis and photosensitivity of Drosophila clock mutants. J Neurogenet 6:1–10

    Article  CAS  PubMed  Google Scholar 

  • Kripke DF, Garfinkel L, Wingard DL, Klauber MR, Marler MR (2002) Mortality associated with sleep duration and insomnia. Arch Gen Psychiatry 59:131–136

    Article  PubMed  Google Scholar 

  • Krishnan N, Kretzschmar D, Rakshit K, Chow E, Giebultowicz J (2009) The circadian clock gene period extends healthspan in aging Drosophila melanogaster. Aging 1:937–948

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krishnan N, Rakshit K, Chow ES, Wentzell JS, Kretzschmar D, Giebultowicz J (2012) Loss of circadian clock accelerates aging in neurodegeneration prone mutants. Neurobiol Dis 45:1129–1135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar S, Mohan A, Sharma VK (2005) Circadian dysfunction reduces lifespan in Drosophila melanogaster. Chronobiol Int 22:641–653

    Article  PubMed  Google Scholar 

  • Kyriacou CP, Oldroyd M, Wood J, Sharp M, Hill M (1990) Clock mutation alters developmental timing in Drosophila. Heredity 64:395–401

    Article  PubMed  Google Scholar 

  • Le Bourg E (1983) Patterns of movement and ageing in Drosophila melanogaster. Arch Gerontol Geriatr 2:299–306

    Article  PubMed  Google Scholar 

  • Le Bourg E (1987) The rate of living theory. Spontaneous locomotor activity, aging and longevity in Drosophila melanogaster. Exp Gerontol 22:359–369

    Article  PubMed  Google Scholar 

  • Le Bourg E, Minois N, Bullens P, Baret P (2000) A mild stress due to hypergravity exposure at young age increases longevity in Drosophila melanogaster males. Biogerontology 1:145–155

    Article  PubMed  Google Scholar 

  • Lee CC (2006) Tumor suppression by the mammalian Period genes. Cancer Causes Control 17:525–530

    Article  PubMed  Google Scholar 

  • Leips J, Mackey TF (2002) The complex genetic architecture of Drosophila lifespan. Exp Aging Res 28:361–390

    Article  PubMed  Google Scholar 

  • Lints FA (1978) Genetics and ageing. Interdisciplinary topics in gerontology. Karger S, Basil

    Google Scholar 

  • Lints FA (1988) Genetics. In: Lints FA, Soliman MH (eds) Drosophila as a model organism for ageing studies. Blackie, London, pp 98–119

    Chapter  Google Scholar 

  • Lints FA, Lints CV (1969) Influence of pre-imaginal environment on fecundity and ageing in Drosophila melanogaster hybrids. I. Preimaginal population density. Exp Gerontol 4:231–244

    Article  CAS  PubMed  Google Scholar 

  • Magwire MM, Yamamoto A, Carbone MA, Roshina NV, Symonenko AV et al (2010) Quantitative and molecular genetic analyses of mutations increasing Drosophila life span. PLoS Genet 6:e1001037

    Article  PubMed Central  PubMed  Google Scholar 

  • Miquel J, Lundgren PR, Bensch KG, Atlan H (1976) Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mech Ageing Dev 5:347–370

    Article  CAS  PubMed  Google Scholar 

  • Mirmiran M, Swaab DF, Kok JH, Hofman MA, Witting W, Van Gool WA (1992) Circadian rhythms and the suprachiasmatic nucleus in neonatal development, aging and Alzheimer’s disease. Prog Brain Res 93:151–162

    Article  CAS  PubMed  Google Scholar 

  • Miyatake T (1997a) Correlated responses to selection for developmental period in Bactrocera cucurbitae (Diptera: Tephritidae): time of mating and daily activity rhythms. Behav Genet 27:489–498

    Article  CAS  PubMed  Google Scholar 

  • Miyatake T (1997b) Genetic trade-off between early fecundity and longevity in Bactrocera cucurbitae (Diptera: Tephritidae). Heredity 78:93–100

    Article  CAS  PubMed  Google Scholar 

  • Miyatake T (1998) Genetic changes of life history and behavioural traits during mass-rearing in the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae). Res Popul Ecol 40:301–310

    Article  Google Scholar 

  • Nunney L (1996) The response to selection for fast larval development in Drosophila melanogaster and its effect on adult weight: an example of a fitness trade-off. Evolution 50:1193–1204

    Article  Google Scholar 

  • Oklejewicz M, Daan S (2002) Enhanced longevity in tau mutant Syrian hamsters, Mesocricetus auratus. J Biol Rhythms 17:210–216

    Article  PubMed  Google Scholar 

  • Pandi-Perumal SR, Warren Spence D, Sharma VK (2010) Aging and circadian rhythms: general trends. In: Pandi-Perumal SR, Monti JM, Monjan AA (eds) Principles and practice of geriatric sleep medicine. Cambridge University, Cambridge, pp 3–21

    Google Scholar 

  • Paternostro G, Vignola C, Bartsch DU, Omens JH, McCulloch AD, Reed JC (2001) Age-associated cardiac dysfunction in Drosophila melanogaster. Circ Res 88:1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Perret M (1997) Change in photoperiodic cycle affects life span in a prosimian primate (Microcebus murinus). J Biol Rhythms 12:136–145

    Article  CAS  PubMed  Google Scholar 

  • Pijpe J, Fischer K, Brakefield PM, Zwaan BJ (2006) Consequences of artificial selection on pre-adult development for adult lifespan under benign conditions in the butterfly Bicyclus anynana. Mech Ageing Dev 127:802–807

    Article  CAS  PubMed  Google Scholar 

  • Prasad NG (2003) Life-history evolution in laboratory populations of Drosophila melanogaster subjected to selection for faster development and early reproduction. PhD thesis, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, pp. 110–112

  • Price JL, Dembinska ME, Young MW, Rosbash M (1995) Suppression of PERIOD protein abundance and circadian cycling by the Drosophila clock mutation timeless. EMBO J 14:4044–4049

    CAS  PubMed  Google Scholar 

  • Rakshit K, Krishnan N, Elżbieta MG, Elżbieta P, Giebultowicz JM (2012) Effects of aging on the molecular circadian oscillations in Drosophila. Chronobiol Int 29:5–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rezával C, Berni J, Gorostiza EA, Werbajh S, Fagilde MM et al (2008) A functional misexpression screen uncovers a role for enabled in progressive neurodegeneration. PLoS ONE 3:e3332

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodin J, McAvay G, Timko C (1998) A longitudinal study of depressed mood and sleep disturbances in elderly adults. J Gerontol 43:45–53

    Article  Google Scholar 

  • Rumble R, Morgan K (1992) Hypnotics, sleep and mortality in elderly people. J Am Geriatr Soc 40:787–791

    CAS  PubMed  Google Scholar 

  • Shaw PJ, Cirelli C, Greenspan RJ, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287:1834–1837

    Article  CAS  PubMed  Google Scholar 

  • Sheeba V, Sharma VK, Shubha K, Chandrashekaran MK, Joshi A (2000) The effect of different light regimes on adult life span in Drosophila melanogaster is partly mediated through reproductive output. J Biol Rhythms 15:380–392

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Miyatake T, Watari Y, Arai T (1997) A gene pleiotropically controlling developmental and circadian periods in the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae). Heredity 70:600–605

    Article  Google Scholar 

  • Sterniczuk R, Dyck RH, Laferla FM, Antle MC (2010) Characterization of the 3xTg-AD mouse model of Alzheimer’s disease: part 1. Circadian changes. Brain Res 1348:139–148

    Article  CAS  PubMed  Google Scholar 

  • Takahashi KH, Teramura K, Muraoka S, Okada Y, Miyatake T (2013) Genetic correlation between the pre-adult developmental period and locomotor activity rhythm in Drosophila melanogaster. Heredity 110:312–320

    Article  CAS  PubMed  Google Scholar 

  • Tamakoshi A, Ohno Y (2004) Self-reported sleep duration as a predictor of all-cause mortality: results from the JACC study, Japan. Sleep 27:51–54

    PubMed  Google Scholar 

  • Tamura T, Chiang AS, Ito N, Liu HP, Horiuchi J, Tully T, Saitoe M (2003) Aging specifically impairs amnesiac-dependent memory in Drosophila. Neuron 40:1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Turek FW, Penev P, Zhang Y, Van Reeth O, Zee P (1995) Effects of age on the circadian system. Neurosci Biobehav Rev 19:53–58

    Article  CAS  PubMed  Google Scholar 

  • Wessells RJ, Bodmer R (2004) Screening assays for heart function mutants in Drosophila. Biotechniques 37:58–66

    CAS  PubMed  Google Scholar 

  • Wu YH, Swaab DF (2007) Disturbance and strategies for reactivation of the circadian rhythm system in aging and Alzheimer’s disease. Sleep Med 8:623–636

    Article  PubMed  Google Scholar 

  • Yadav P, Sharma VK (2013) Correlated changes in circadian clocks in response to selection for faster pre-adult development in fruit flies Drosophila melanogaster. J Comp Physiol B 183:333–343

    Article  CAS  PubMed  Google Scholar 

  • Yu EA, Weaver DR (2011) Disrupting the circadian clock: gene-specific effects on aging, cancer, and other phenotypes. Aging 3:479–493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zwaan BJ, Bijlsma R, Hoekstra RF (1995) Artificial selection for development time in Drosophila melanogaster in relation to the evolution of aging: direct and correlated responses. Evolution 49:635–648

    Article  Google Scholar 

Download references

Acknowledgments

We thank Koustubh and Shahnaz for discussions about results and suggesting some very useful improvements. We also thank two anonymous reviewers for carefully reading a previous version of our manuscript and suggesting some very needful changes. We are also thankful to Ananya, Manishi, Rajanna and Muniraju for helping us with experiments and population maintenance. This work was supported by Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.

Conflict of interest

The authors do not have any competing interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadav, P., Sharma, V.K. Circadian clocks of faster developing fruit fly populations also age faster. Biogerontology 15, 33–45 (2014). https://doi.org/10.1007/s10522-013-9467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-013-9467-y

Keywords

Navigation