Skip to main content

Advertisement

Log in

Association of AMD-like retinopathy development with an Alzheimer’s disease metabolic pathway in OXYS rats

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The main cause of vision loss in older individuals is age-related macular degeneration (AMD)—a complex multifactorial disease, whose etiology and pathogenesis are not completely understood. This is due to the impossibility of investigating the early stages of AMD and paucity of biological models. The senescence-accelerated OXYS rats develop retinopathy with clinical and morphological manifestations similar to AMD. But the genetic determinants of its development are not known. Previously we identified quantitative trait loci (QTLs) associated with the development of cataract, retinopathy, and behavioral signs in OXYS rat. In this study, we used bioinformatic analysis to show the enrichment of QTL region with genes associated with neurodegeneration, including a pathway of Alzheimer’s disease. For selected list of candidate genes we designed oligonucleotide DNA chips. Using them we found small but significant changes in expression of several genes in OXYS retina compared to disease-free Wistar rats. Among the genes with altered expression were Picalm and Apba2, known to be participants in the processing of the beta-amyloid (Aβ). Measurement of Aβ 1-42 in the retina showed that its level increases with age in rats, and at advanced stages of retinopathy in OXYS rats, its expression becomes significantly higher than that of disease-free Wistar rats. Based on functional annotation of QTL, microarray, and ELISA results we suggest that accumulation of Aβ may have a role in the pathogenesis of retinopathy in OXYS rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

Aβ (1-42):

Amyloid beta protein fragment (1-42)

APP:

Amyloid beta precursor protein

AMD:

Age-related macular degeneration

RPE:

Retinal pigment epithelium

QTLs:

Quantitative trait loci

References

  • Aerts S, Lambrechts D, Maity S et al (2006) Gene prioritization through genomic data fusion. Nat Biotechnol 24:537–544. doi:10.1038/nbt1203

    Article  PubMed  CAS  Google Scholar 

  • Agafonova IG, Kolosova NG, Mishchenko NP et al (2007) Effect of histochrome on brain vessels and research and exploratory activity of senescence-accelerated OXYS rats. Bull Exp Biol Med 143:467–471

    Article  PubMed  CAS  Google Scholar 

  • Baig S, Joseph SA, Tayler H et al (2010) Distribution and expression of picalm in Alzheimer disease. J Neuropathol Exp Neurol 69:1071–1077. doi:10.1097/NEN.0b013e3181f52e01

    Article  PubMed  CAS  Google Scholar 

  • Cataldi A, Di Giulio C (2009) “Oxygen supply” as modulator of aging processes: hypoxia and hyperoxia models for aging studies. Curr Aging Sci 2:95–102

    Article  PubMed  CAS  Google Scholar 

  • Chiu K, Chan T-F, Wu A et al (2012) Neurodegeneration of the retina in mouse models of Alzheimer’s disease: what can we learn from the retina? Age (Dordr) 34:633–649. doi:10.1007/s11357-011-9260-2

    Article  CAS  Google Scholar 

  • Dasari B, Prasanthi JR, Marwarha G et al (2011) Cholesterol-enriched diet causes age-related macular degeneration-like pathology in rabbit retina. BMC Ophthalmol 11:22. doi:10.1186/1471-2415-11-22

    Article  PubMed  CAS  Google Scholar 

  • Dennis G, Sherman BT, Hosack DA et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  • Dentchev T, Milam AH, Lee VM-Y et al (2003) Amyloid-beta is found in drusen from some age-related macular degeneration retinas, but not in drusen from normal retinas. Mol Vis 9:184–190

    PubMed  CAS  Google Scholar 

  • Ding J-D, Johnson LV, Herrmann R et al (2011) Anti-amyloid therapy protects against retinal pigmented epithelium damage and vision loss in a model of age-related macular degeneration. Proc Natl Acad Sci USA 108:E279–E287. doi:10.1073/pnas.1100901108

    Article  PubMed  CAS  Google Scholar 

  • Harold D, Abraham R, Hollingworth P et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093. doi:10.1038/ng.440

    Article  PubMed  CAS  Google Scholar 

  • Hoh Kam J, Lenassi E, Jeffery G (2010) Viewing ageing eyes: diverse sites of amyloid Beta accumulation in the ageing mouse retina and the up-regulation of macrophages. PLoS One. doi:10.1371/journal.pone.0013127

    PubMed  Google Scholar 

  • Huang Q-Y, Li GHY, Cheung WMW et al (2008) Prediction of osteoporosis candidate genes by computational disease-gene identification strategy. J Hum Genet 53:644–655. doi:10.1007/s10038-008-0295-x

    Article  PubMed  CAS  Google Scholar 

  • Hughes TR, Mao M, Jones AR et al (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 19:342–347. doi:10.1038/86730

    Article  PubMed  CAS  Google Scholar 

  • Hur J-Y, Teranishi Y, Kihara T et al (2012) Identification of novel γ-secretase-associated proteins in detergent-resistant membranes from brain. J Biol Chem 287:11991–12005. doi:10.1074/jbc.M111.246074

    Article  PubMed  CAS  Google Scholar 

  • Joe B, Letwin NE, Garrett MR et al (2005) Transcriptional profiling with a blood pressure QTL interval-specific oligonucleotide array. Physiol Genomics 23:318–326. doi:10.1152/physiolgenomics.00164.2004

    Article  PubMed  CAS  Google Scholar 

  • Johnson LV, Leitner WP, Rivest AJ et al (2002) The Alzheimer’s A beta-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci USA 99:11830–11835. doi:10.1073/pnas.192203399

    Article  PubMed  CAS  Google Scholar 

  • Kaarniranta K, Salminen A, Haapasalo A et al (2011) Age-related macular degeneration (AMD): Alzheimer’s disease in the eye? J Alzheimers Dis 24:615–631. doi:10.3233/JAD-2011-101908

    PubMed  CAS  Google Scholar 

  • Kolosova NG, Stefanova NA, Sergeeva SV (2009) OXYS rats: a prospective model for evaluation of antioxidant availability in prevention and therapy of accelerated aging and age-related cognitive decline. In: Gariépy Q, Ménard R (eds) Handbook of cognitive aging: causes. Nova Science Publishers, NY, pp 47–82

    Google Scholar 

  • Kolosova NG, Muraleva NA, Zhdankina AA et al (2012) Prevention of age-related macular degeneration-like retinopathy by rapamycin in rats. Am J Pathol 181:472–477. doi:10.1016/j.ajpath.2012.04.018

    Article  PubMed  CAS  Google Scholar 

  • Korbolina EE, Kozhevnikova OS, Stefanova NA, Kolosova NG (2012) Quantitative trait loci on chromosome 1 for cataract and AMD-like retinopathy in senescence-accelerated OXYS rats. Aging (Albany NY) 4:49–59

    PubMed  CAS  Google Scholar 

  • Kozhevnikova OS, Korbolina EE, Ershov NI, Kolosova NG (2013) Rat retinal transcriptome: effects of aging and AMD-like retinopathy. Cell Cycle. 12(11):1745–1761. doi:10.4161/cc.24825

    Google Scholar 

  • Lambert J-C, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099. doi:10.1038/ng.439

    Article  PubMed  CAS  Google Scholar 

  • Laws SM, Hone E, Gandy S, Martins RN (2003) Expanding the association between the APOE gene and the risk of Alzheimer’s disease: possible roles for APOE promoter polymorphisms and alterations in APOE transcription. J Neurochem 84:1215–1236

    Article  PubMed  CAS  Google Scholar 

  • Liang WS, Reiman EM, Valla J et al (2008) Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA 105:4441–4446. doi:10.1073/pnas.0709259105

    Article  PubMed  CAS  Google Scholar 

  • Loeffler DA, Camp DM, Bennett DA (2008) Plaque complement activation and cognitive loss in Alzheimer’s disease. J Neuroinflammation 5:9. doi:10.1186/1742-2094-5-9

    Article  PubMed  Google Scholar 

  • Luibl V, Isas JM, Kayed R et al (2006) Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. J Clin Invest 116:378–385. doi:10.1172/JCI25843

    Article  PubMed  CAS  Google Scholar 

  • Mandrekar S, Jiang Q, Lee CYD et al (2009) Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J Neurosci 29:4252–4262. doi:10.1523/JNEUROSCI.5572-08.2009

    Article  PubMed  CAS  Google Scholar 

  • Markovets AM, Fursova AZ, Kolosova NG (2011a) Therapeutic action of the mitochondria-targeted antioxidant SkQ1 on retinopathy in OXYS rats linked with improvement of VEGF and PEDF gene expression. PLoS One 6(7):e21682. doi:10.1371/journal.pone.0021682

    Article  PubMed  CAS  Google Scholar 

  • Markovets AM, Saprunova VB, Zhdankina AA et al (2011b) Alterations of retinal pigment epithelium cause AMD-like retinopathy in senescence-accelerated OXYS rats. Aging (Albany NY) 3:44–54

    CAS  Google Scholar 

  • Mi H, Lazareva-Ulitsky B, Loo R et al (2005) The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33:D284–D288. doi:10.1093/nar/gki078

    Article  PubMed  CAS  Google Scholar 

  • Mullins RF, Russell SR, Anderson DH, Hageman GS (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 14:835–846

    PubMed  CAS  Google Scholar 

  • Neroev VV, Archipova MM, Bakeeva LE et al (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 4. Age-related eye disease. SkQ1 returns vision to blind animals. Biochemistry (Mosc) 73:1317–1328

    Article  CAS  Google Scholar 

  • Ohno-Matsui K (2011) Parallel findings in age-related macular degeneration and Alzheimer’s disease. Prog Retin Eye Res 30:217–238. doi:10.1016/j.preteyeres.2011.02.004

    Article  PubMed  Google Scholar 

  • Relógio A, Schwager C, Richter A et al (2002) Optimization of oligonucleotide-based DNA microarrays. Nucleic Acids Res 30:e51

    Article  PubMed  Google Scholar 

  • Rogers J, Lue L-F (2001) Microglial chemotaxis, activation, and phagocytosis of amyloid β-peptide as linked phenomena in Alzheimer’s disease. Neurochem Int 39:333–340. doi:10.1016/S0197-0186(01)00040-7

    Article  PubMed  CAS  Google Scholar 

  • Saprunova VB, Pilipenko DI, Alexeevsky AV et al (2010) Lipofuscin granule dynamics during development of age-related macular degeneration. Biochemistry (Mosc) 75:130–138

    Article  CAS  Google Scholar 

  • Sauito Y, Sano Y, Vassar R et al (2008) X11 proteins regulate the translocation of amyloid beta-protein precursor (APP) into detergent-resistant membrane and suppress the amyloidogenic cleavage of APP by beta-site-cleaving enzyme in brain. J Biol Chem 283:35763–35771. doi:10.1074/jbc.M801353200

    Article  Google Scholar 

  • Seddon JM, Reynolds R, Yu Y et al (2011) Risk models for progression to advanced age-related macular degeneration using demographic, environmental, genetic, and ocular factors. Ophthalmology 118:2203–2211. doi:10.1016/j.ophtha.2011.04.029

    Article  PubMed  Google Scholar 

  • Stefanova NA, Fursova AZ, Kolosova NG (2010) Behavioral effects induced by mitochondria-targeted antioxidant SkQ1 in Wistar and senescence-accelerated OXYS rats. J Alzheimers Dis. doi:10.3233/JAD-2010-091675

    PubMed  Google Scholar 

  • Stefanova NA, Fursova AZ, Sarsenbaev KN, Kolosova NG (2011) Effects of Cistanche deserticola on behavior and signs of cataract and retinopathy in senescence-accelerated OXYS rats. J Ethnopharmacol 138:624–632. doi:10.1016/j.jep.2011.10.017

    Article  PubMed  Google Scholar 

  • Verdugo RA, Farber CR, Warden CH, Medrano JF (2010) Serious limitations of the QTL/microarray approach for QTL gene discovery. BMC Biol 8:96. doi:10.1186/1741-7007-8-96

    Article  PubMed  Google Scholar 

  • Yazawa H, Yu ZX, Takeda et al (2001) Beta amyloid peptide (Abeta42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages. FASEB J 15:2454–2462. doi:10.1096/fj.01-0251com

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Ohno-Matsui K, Ichinose S et al (2005) The potential role of amyloid beta in the pathogenesis of age-related macular degeneration. J Clin Invest 115:2793–2800. doi:10.1172/JCI24635

    Article  PubMed  CAS  Google Scholar 

  • Zhdankina AA, Fursova AZ, Logvinov SV, Kolosova NG (2008) Clinical and morphological characteristics of chorioretinal degeneration in early aging OXYS rats. Bull Exp Biol Med 146:455–458

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Microscopy was performed in the Microscopy Centre of Institute Cytology and Genetics SB RAS. We thank A. Shvalov and S.I. Baiborodin for technical assistance and Dr. E. Rogaev for helpful discussion. This study was supported by Russian Foundation for Basic Research Grants (project 11-04-00666-a, 12-04-00091-a and 12-04-31975) and partially by Project No. 14.B25.31.0033, Resolution No. 220 of the Government of the Russian Federation of April 9, 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataliya G. Kolosova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozhevnikova, O.S., Korbolina, E.E., Stefanova, N.A. et al. Association of AMD-like retinopathy development with an Alzheimer’s disease metabolic pathway in OXYS rats. Biogerontology 14, 753–762 (2013). https://doi.org/10.1007/s10522-013-9439-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-013-9439-2

Keywords

Navigation