Skip to main content

Advertisement

Log in

Progeroid syndromes: models for stem cell aging?

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Stem cells are responsible for tissue repair and maintenance and it is assumed that changes observed in the stem cell compartment with age underlie the concomitant decline in tissue function. Studies in murine models have highlighted the importance of intrinsic changes occurring in stem cells with age. They have also drawn the attention to other factors, such as changes in the local or systemic environment as the primary cause of stem cell dysfunction. Whilst knowledge in murine models has been advancing rapidly there has been little translation of these data to human aging. This is most likely due to the difficulties of testing the regenerative capacity of human stem cells in vivo and to substantial differences in the aging phenotype within humans. Here we summarize evidence to show how progeroid syndromes, integrated with other models, can be valuable tools in addressing questions about the role of stem cell aging in human degenerative diseases of older age and the molecular pathways involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ademokun A, Wu YC et al (2010) The ageing B cell population: composition and function. Biogerontology 11(2):125–137

    Article  PubMed  Google Scholar 

  • Allsopp RC, Morin GB et al (2003) Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102(2):517–520

    Article  PubMed  CAS  Google Scholar 

  • Angelopoulou N, Matziari C et al (2000) Bone mineral density and muscle strength in young men with mental retardation (with and without Down syndrome). Calcif Tissue Int 66(3):176

    Article  PubMed  CAS  Google Scholar 

  • Bahn S, Mimmack M et al (2002) Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down’s syndrome: a gene expression study. Lancet 359(9303):310–315

    Article  PubMed  CAS  Google Scholar 

  • Barlow C, Hirotsune S et al (1996) Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86(1):159–171

    Article  PubMed  CAS  Google Scholar 

  • Baxter MA, Wynn RF et al (2004) Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22(5):675–682

    Article  PubMed  CAS  Google Scholar 

  • Beerman I, Bhattacharya D et al (2010) Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci U S A 107(12):5465–5470

    Article  PubMed  CAS  Google Scholar 

  • Bellantuono I, Keith WN (2007) Stem cell ageing: does it occur and can we intervene? Expert Rev Mol Med 9(31):1–20

    Article  PubMed  Google Scholar 

  • Blackburn EH (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 579(4):859–862

    Article  PubMed  CAS  Google Scholar 

  • Blasco MA (2007) Telomere length, stem cells and aging. Nat Chem Biol 3(10):640–649

    Article  PubMed  CAS  Google Scholar 

  • Bug G, Gul H et al (2005) Valproic acid stimulates proliferation and self-renewal of hematopoietic stem cells. Cancer Res 65(7):2537–2541

    Article  PubMed  CAS  Google Scholar 

  • Cairney CJ, Sanguinetti G et al (2009) A systems biology approach to Down syndrome: identification of Notch/Wnt dysregulation in a model of stem cells aging. Biochim Biophys Acta 1792:353–363

    PubMed  CAS  Google Scholar 

  • Carmichael CL, Majewski IJ et al (2009) Hematopoietic defects in the Ts1Cje mouse model of Down syndrome. Blood 113(9):1929–1937

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty S, Sun CL et al (2009) Accelerated telomere shortening precedes development of therapy-related myelodysplasia or acute myelogenous leukemia after autologous transplantation for lymphoma. J Clin Oncol 27(5):791–798

    Article  PubMed  Google Scholar 

  • Chen S, Do JT et al (2006) Self-renewal of embryonic stem cells by a small molecule. Proc Natl Acad Sci U S A 103(46):17266–17271

    Article  PubMed  CAS  Google Scholar 

  • Cho RH, Sieburg HB et al (2008) A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 111(12):5553–5561

    Article  PubMed  CAS  Google Scholar 

  • Choudhury AR, Ju Z et al (2007) Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 39(1):99–105

    Article  PubMed  CAS  Google Scholar 

  • Creutzig U, Ritter J et al (1996) Myelodysplasia and acute myelogenous leukemia in Down’s syndrome. A report of 40 children of the AML-BFM study group. Leukemia 10(11):1677–1686

    PubMed  CAS  Google Scholar 

  • De Felice L, Tatarelli C et al (2005) Histone deacetylase inhibitor valproic acid enhances the cytokine-induced expansion of human hematopoietic stem cells. Cancer Res 65(4):1505–1513

    Article  PubMed  Google Scholar 

  • de Lange T (2002) Protection of mammalian telomeres. Oncogene 21(4):532–540

    Article  PubMed  Google Scholar 

  • Drachtman RA, Alter BP (1995) Dyskeratosis congenita. Dermatol Clin 13(1):33–39

    PubMed  CAS  Google Scholar 

  • Enwere E, Shingo T et al (2004) Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 24(38):8354–8365

    Article  PubMed  CAS  Google Scholar 

  • Epstein CJ, Hofmeister BG et al (1985) Stem cell deficiencies and thymic abnormalities in fetal mouse trisomy 16. J Exp Med 162(2):695–712

    Article  PubMed  CAS  Google Scholar 

  • Ertl RP, Chen J et al (2008) Effects of dietary restriction on hematopoietic stem-cell aging are genetically regulated. Blood 111(3):1709–1716

    Article  PubMed  CAS  Google Scholar 

  • Espada J, Varela I et al (2008) Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. J Cell Biol 181(1):27–35

    Article  PubMed  CAS  Google Scholar 

  • Ferron S, Mira H et al (2004) Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells. Development 131(16):4059–4070

    Article  PubMed  CAS  Google Scholar 

  • Flores I, Blasco MA (2010) The role of telomeres and telomerase in stem cell aging. FEBS Lett 584(17):3826–3830

    Article  PubMed  CAS  Google Scholar 

  • Flores I, Cayuela ML et al (2005) Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309(5738):1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Flores I, Canela A et al (2008) The longest telomeres: a general signature of adult stem cell compartments. Genes Dev 22(5):654–667

    Article  PubMed  CAS  Google Scholar 

  • Frasca D, Blomberg BB (2009) Effects of aging on B cell function. Curr Opin Immunol 21(4):425–430

    Article  PubMed  CAS  Google Scholar 

  • Gambardella A, Nagaraju CK et al (2011) Glycogen synthase kinase-3alpha/beta inhibition promotes in vivo amplification of endogenous mesenchymal progenitors with osteogenic and adipogenic potential and their differentiation to the osteogenic lineage. J Bone Miner Res 26(4):811–821

    Article  PubMed  CAS  Google Scholar 

  • Grolleau-Julius A, Ray D et al (2010) The role of epigenetics in aging and autoimmunity. Clin Rev Allergy Immunol 39(1):42–50

    Article  PubMed  CAS  Google Scholar 

  • Harley CB, Futcher AB et al (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345(6274):458–460

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  Google Scholar 

  • Haynes L, Maue AC (2009) Effects of aging on T cell function. Curr Opin Immunol 21(4):414–417

    Article  PubMed  CAS  Google Scholar 

  • Herndon LA, Schmeissner PJ et al (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419(6909):808–814

    Article  PubMed  CAS  Google Scholar 

  • Herrera E, Samper E et al (1999) Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J 18(11):2950–2960

    Article  PubMed  CAS  Google Scholar 

  • Hilton MJ, Tu X et al (2008) Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14(3):306–314

    Article  PubMed  CAS  Google Scholar 

  • Hofer AC, Tran RT et al (2005) Shared phenotypes among segmental progeroid syndromes suggest underlying pathways of aging. J Gerontol A Biol Sci Med Sci 60(1):10–20

    Article  PubMed  Google Scholar 

  • Holmes DK, Bates N et al (2006) Hematopoietic progenitor cell deficiency in fetuses and children affected by Down’s syndrome. Exp Hematol 34(12):1611–1615

    Article  PubMed  CAS  Google Scholar 

  • Ikuta K, Kina T et al (1990) A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62(5):863–874

    Article  PubMed  CAS  Google Scholar 

  • Jaskelioff M, Muller FL et al (2010) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469:102–106

    Article  PubMed  Google Scholar 

  • Jawaheer D, Seldin MF et al (2003) Screening the genome for rheumatoid arthritis susceptibility genes: a replication study and combined analysis of 512 multicase families. Arthritis Rheum 48(4):906–916

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Schiffer E et al (2008) Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease. Proc Natl Acad Sci U S A 105(32):11299–11304

    Article  PubMed  CAS  Google Scholar 

  • Ju Z, Jiang H et al (2007) Telomere dysfunction induces environmental alterations limiting hematopoietic stem cell function and engraftment. Nat Med 13(6):742–747

    Article  PubMed  CAS  Google Scholar 

  • Kantor AB, Herzenberg LA (1993) Origin of murine B cell lineages. Annu Rev Immunol 11:501–538

    Article  PubMed  CAS  Google Scholar 

  • Karlson EW, Chibnik LB et al (2009) Biomarkers of inflammation and development of rheumatoid arthritis in women from two prospective cohort studies. Arthritis Rheum 60(3):641–652

    Article  PubMed  CAS  Google Scholar 

  • Kerbauy DM, Lesnikov V et al (2004) Engraftment of distinct clonal MDS-derived hematopoietic precursors in NOD/SCID-beta2-microglobulin-deficient mice after intramedullary transplantation of hematopoietic and stromal cells. Blood 104(7):2202–2203

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood TB (2005) Understanding the odd science of aging. Cell 120(4):437–447

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood TB, Finch CE (2002) Ageing: the old worm turns more slowly. Nature 419(6909):794–795

    Article  PubMed  CAS  Google Scholar 

  • Kirsammer G, Jilani S et al (2008) Highly penetrant myeloproliferative disease in the Ts65Dn mouse model of Down syndrome. Blood 111(2):767–775

    Article  PubMed  CAS  Google Scholar 

  • Kollman C, Howe CW et al (2001) Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood 98(7):2043–2051

    Article  PubMed  CAS  Google Scholar 

  • Lafreniere D, Mann N (2009) Anosmia: loss of smell in the elderly. Otolaryngol Clin North Am 42(1):123–131 x

    Article  PubMed  Google Scholar 

  • Lee HW, Blasco MA et al (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392(6676):569–574

    Article  PubMed  CAS  Google Scholar 

  • Martin GM (2005) Genetic modulation of senescent phenotypes in Homo sapiens. Cell 120(4):523–532

    Article  PubMed  CAS  Google Scholar 

  • Masi AT (1994) Incidence of rheumatoid arthritis: do the observed age-sex interaction patterns support a role of androgenic-anabolic steroid deficiency in its pathogenesis? Br J Rheumatol 33(8):697–699

    Article  PubMed  CAS  Google Scholar 

  • Miller JP, Allman D (2003) The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J Immunol 171(5):2326–2330

    PubMed  CAS  Google Scholar 

  • Min H, Montecino-Rodriguez E et al (2006) Effects of aging on the common lymphoid progenitor to pro-B cell transition. J Immunol 176(2):1007–1012

    PubMed  CAS  Google Scholar 

  • Molofsky AV, Slutsky SG et al (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443(7110):448–452

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Prowse KR et al (1996) Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5(3):207–216

    Article  PubMed  CAS  Google Scholar 

  • Naveiras O, Nardi V et al (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460(7252):259–263

    Article  PubMed  CAS  Google Scholar 

  • Nespoli L, Burgio GR et al (1993) Immunological features of Down’s syndrome: a review. J Intellect Disabil Res 37(Pt 6):543–551

    PubMed  Google Scholar 

  • Nimer SD (2008) Myelodysplastic syndromes. Blood 111(10):4841–4851

    Article  PubMed  CAS  Google Scholar 

  • Nishimura EK, Granter SR et al (2005) Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307(5710):720–724

    Article  PubMed  CAS  Google Scholar 

  • Omidvar N, Kogan S et al (2007) BCL-2 and mutant NRAS interact physically and functionally in a mouse model of progressive myelodysplasia. Cancer Res 67(24):11657–11667

    Article  PubMed  CAS  Google Scholar 

  • Ozgenc A, Loeb LA (2005) Current advances in unraveling the function of the Werner syndrome protein. Mutat Res 577(1–2):237–251

    PubMed  CAS  Google Scholar 

  • Pignolo RJ, Suda RK et al (2008) Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis. Aging Cell 7(1):23–31

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers MH, Mukherjee S et al (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464(7290):852–857

    Article  PubMed  CAS  Google Scholar 

  • Rauner M, Sipos W et al (2009) Inhibition of Lamin A/C attenuates osteoblast differentiation and enhances RANKL-dependent osteoclastogenesis. J Bone Miner Res 24(1):78–86

    Article  PubMed  CAS  Google Scholar 

  • Rigolin GM, Porta MD et al (2004) Flow cytometric detection of accelerated telomere shortening in myelodysplastic syndromes: correlations with aetiological and clinical–biological findings. Eur J Haematol 73(5):351–358

    Article  PubMed  Google Scholar 

  • Rossi DJ, Bryder D et al (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102(26):9194–9199

    Article  PubMed  CAS  Google Scholar 

  • Rossi DJ, Jamieson CH et al (2008) Stems cells and the pathways to aging and cancer. Cell 132(4):681–696

    Article  PubMed  CAS  Google Scholar 

  • Rudolph KL, Chang S et al (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96(5):701–712

    Article  PubMed  CAS  Google Scholar 

  • Rumble B, Retallack R et al (1989) Amyloid A4 protein and its precursor in Down’s syndrome and Alzheimer’s disease. N Engl J Med 320(22):1446–1452

    Article  PubMed  CAS  Google Scholar 

  • Ruzankina Y, Pinzon-Guzman C et al (2007) Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1(1):113–126

    Article  PubMed  CAS  Google Scholar 

  • Sahin E, Depinho RA (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464(7288):520–528

    Article  PubMed  CAS  Google Scholar 

  • Samper E, Flores JM et al (2001) Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc−/− mice with short telomeres. EMBO Rep 2(9):800–807

    Article  PubMed  CAS  Google Scholar 

  • Samper E, Fernandez P et al (2002) Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells. Blood 99(8):2767–2775

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti G, Noirel J et al (2008) MMG: a probabilistic tool to identify submodules of metabolic pathways. Bioinformatics 24(8):1078–1084

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Meijer L et al (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10(1):55–63

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312(5776):1059–1063

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi P, Misteli T (2008) Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 10(4):452–459

    Article  PubMed  CAS  Google Scholar 

  • Schonland SO, Lopez C et al (2003) Premature telomeric loss in rheumatoid arthritis is genetically determined and involves both myeloid and lymphoid cell lineages. Proc Natl Acad Sci U S A 100(23):13471–13476

    Article  PubMed  Google Scholar 

  • Sharpless NE, DePinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8(9):703–713

    Article  PubMed  CAS  Google Scholar 

  • Sieburg HB, Cho RH et al (2006) The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 107(6):2311–2316

    Article  PubMed  CAS  Google Scholar 

  • Siegl-Cachedenier I, Flores I et al (2007) Telomerase reverses epidermal hair follicle stem cell defects and loss of long-term survival associated with critically short telomeres. J Cell Biol 179(2):277–290

    Article  PubMed  CAS  Google Scholar 

  • Song Z, Wang J et al (2010) Alterations of the systemic environment are the primary cause of impaired B and T lymphopoiesis in telomere-dysfunctional mice. Blood 115(8):1481–1489

    Article  PubMed  Google Scholar 

  • Strehler BL, Mildvan AS (1960) General theory of mortality and aging. Science 132:14–21

    Article  PubMed  CAS  Google Scholar 

  • Testa NG, Hendry JH et al (1985) Long-term bone marrow damage in experimental systems and in patients after radiation or chemotherapy. Anticancer Res 5(1):101–110

    PubMed  CAS  Google Scholar 

  • Tomas-Loba A, Flores I et al (2008) Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 135(4):609–622

    Article  PubMed  CAS  Google Scholar 

  • Trowbridge JJ, Xenocostas A et al (2006) Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat Med 12(1):89–98

    Article  PubMed  CAS  Google Scholar 

  • Vaziri H, Dragowska W et al (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci U S A 91(21):9857–9860

    Article  PubMed  CAS  Google Scholar 

  • Vulliamy TJ, Dokal I (2008) Dyskeratosis congenita: the diverse clinical presentation of mutations in the telomerase complex. Biochimie 90(1):122–130

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Schulte BA et al (2006) Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 107(1):358–366

    Article  PubMed  CAS  Google Scholar 

  • Waterstrat A, Oakley E, Miller A, Swierski C, Liang Y, Van Zant G (2008) Mechanisms of stem cell aging. In: Rudolph KL (ed) Telomeres and telomerase in ageing, disease, and cancer, Springer, pp 111–140

  • Wong KK, Maser RS et al (2003) Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 421(6923):643–648

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Ashley T et al (1996) Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 10(19):2411–2422

    Article  PubMed  CAS  Google Scholar 

  • Zhao C, Deng W et al (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in the authors labs is supported by Cancer Research UK, European Community grants LSHC-CT-2004-502943, Health-F2-2007-200950, Glasgow University and Strategic Promotion of Ageing Research Capacity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bellantuono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellantuono, I., Sanguinetti, G. & Keith, W.N. Progeroid syndromes: models for stem cell aging?. Biogerontology 13, 63–75 (2012). https://doi.org/10.1007/s10522-011-9347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-011-9347-2

Keywords

Navigation