Skip to main content
Log in

Dietary supplementation with N-acetylcysteine, α-tocopherol and α-lipoic acid prevents age related decline in Na+,K+-ATPase activity and associated peroxidative damage in rat brain synaptosomes

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

This study has shown that in aged rat brain (22–24 months) crude synaptosomes in comparison to that in young animals (4–6 months), a striking decrease in the activity of Na+,K+-ATPase occurs along with decreased K m and V max but without any change in enzyme content as seen by immunoblotting. This is associated with an accumulation of peroxidative damage products in aged brain. When rats are given antioxidant supplementation in the diet with a combination of N-acetylcysteine, α-tocopherol and α-lipoic acid daily from 18 months onwards and sacrificed at 22–24 months for experimentation, the age associated decrease of Na+,K+-ATPase activity, alterations of its kinetic parameters and accumulation of peroxidative damage products in brain synaptosomes are prevented nearly completely. Because of the critical importance of Na+,K+-ATPase in neuronal functions, the results of this study may be of potential implications in controlling age-related functional deficits of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afaq F, Abidi P, Rahman Q (2000) N-acetyl L-cysteine attenuates oxidant-mediated toxicity induced by chrysotile fibers. Toxicol Lett 117:53–60. doi:10.1016/S0378-4274(00)00236-8

    Article  PubMed  CAS  Google Scholar 

  • Arivazhagan P, Thilakavathy T, Panneerselvam C (2000) Antioxidant lipoate and tissue antioxidants in aged rats. J Nutr Biochem 11:122–127. doi:10.1016/S0955-2863(99)00079-0

    Article  PubMed  CAS  Google Scholar 

  • Babusikova E, Hatok J, Dobrota D, Kaplan P (2007) Age-related oxidative modifications of proteins and lipids in rat brain. Neurochem Res 32:1351–1356. doi:10.1007/s11064-007-9314-0

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (1995) Aging, energy and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366. doi:10.1002/ana.410380304

    Article  PubMed  CAS  Google Scholar 

  • Benevenga NJ, Calvert C, Eckhert CD, Fahey GC, Greger JL, Keen CL et al (1995) Subcommittee on laboratory animal nutrition, Committee on animal nutrition, Board on agriculture, National research Council Nutrient requirements of Laboratory Animals. National Academic Press, Washington

    Google Scholar 

  • Cakatay U, Telci A, Kayali R, Tekeli F, Akcay T, Sivas A (2001) Relation of oxidative protein damage and nitrotyrosine levels in the aging rat brain. Exp Gerontol 36:221–229. doi:10.1016/S0531-5565(00)00197-2

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty H, Sen P, Sur A, Chatterjee U, Chakrabarti S (2003) Age-related oxidative inactivation of Na+,K+-ATPase in rat brain crude synaptosomes. Exp Gerontol 38:705–710. doi:10.1016/S0531-5565(03)00066-4

    Article  PubMed  CAS  Google Scholar 

  • Dillard CJ, Tappel AL (1973) Fluorescent products from reaction of peroxidizing polyunsaturated fatty acids with phosphatidyl ethanolamine and phenylalanine. Lipids 8:183–189. doi:10.1007/BF02544632

    Article  PubMed  CAS  Google Scholar 

  • Esmann M (1988) ATPase and phosphatase activity of Na+,K+-ATPase: molar and specific activity, protein determination. Methods Enzymol 156:105–115. doi:10.1016/0076-6879(88)56013-5

    Article  PubMed  CAS  Google Scholar 

  • Gerbi A, Debray M, Maixent JM, Chanez C, Bourre JM (1993) Heterogeneous Na+ sensitivity of Na+,K+-ATPase isoenzymes in whole brain membranes. J Neurochem 60:246–252. doi:10.1111/j.1471-4159.1993.tb05844.x

    Article  PubMed  CAS  Google Scholar 

  • Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain: an electron microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96:78–88

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  • Harvey BH, Joubert C, Preez JL, Berk M (2008) Effect of chronic N-acetylcysteine administration on oxidative status in the presence and absence of induced oxidative stress in rat striatum. Neurochem Res 33:508–517. doi:10.1007/s11064-007-9466-y

    Article  PubMed  CAS  Google Scholar 

  • Kadoya A, Miyake H, Ohyashiki T (2003) Contribution of lipid dynamics on the inhibition of bovine brain synaptosomal Na+-K+-ATPase activity induced by 4-hydroxy-2-nonenal. Biol Pharm Bull 26:787–795. doi:10.1248/bpb.26.787

    Article  PubMed  CAS  Google Scholar 

  • Kagan VE, Shvedova A, Serbinova E, Khan S, Swanson C, Powell R et al (1992) Dihydrolipoic acid—a universal antioxidant both in the membrane and in the aqueous phase. Reduction of peroxyl, ascorbyl and chromanoxyl radicals. Biochem Pharmacol 44:1637–1649. doi:10.1016/0006-2952(92)90482-X

    Article  PubMed  CAS  Google Scholar 

  • Khan FH, Sen T, Chakrabarti S (2003) Dopamine oxidation products inhibit Na+,K+-ATPase activity in crude synaptosomal–mitochondrial fraction from rat brain. Free Radic Res 37:597–601. doi:10.1080/1071576031000115651

    Article  PubMed  CAS  Google Scholar 

  • Kikugawa K, Kato T, Beppu M, Hayasaka A (1989) Fluorescent and cross-linked proteins formed by free radical and aldehyde species generated during lipid oxidation. Adv Exp Med Biol 266:345–356

    PubMed  CAS  Google Scholar 

  • Kovachich GB, Mishra OP (1981) Partial inactivation of Na+,K+-ATPase in cortical brain slices incubated in normal Krebs-ringer phosphate medium at 1 and at 10 atm oxygen pressures. J Neurochem 36:333–341. doi:10.1111/j.1471-4159.1981.tb02418.x

    Article  PubMed  CAS  Google Scholar 

  • Kurella EG, Tyulina OV, Boldyrev AA (1999) Oxidative resistance of Na/K-ATPase. Cell Mol Neurobiol 19:133–140. doi:10.1023/A:1006976810642

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Lehotsky J, Kaplan P, Racay P, Matejovicova M, Drgova A, Mezesova V (1999) Membrane ion transport systems during oxidative stress in rodent brain: protective effect of stobadine and other antioxidants. Life Sci 65:1951–1958. doi:10.1016/S0024-3205(99)00454-3

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Williams JA, Stadman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–380. doi:10.1016/S0076-6879(94)33040-9

    Article  PubMed  CAS  Google Scholar 

  • Lichtstein D, Rosen H (2001) Endogenous digitalis-like Na+,K+-ATPase inhibitors, and brain function. Neurochem Res 26:971–978. doi:10.1023/A:1012340702763

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin–Phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Matsugo S, Yan LJ, Han D, Trischler HJ, Packer L (1995) Elucidation of antioxidant activity of alpha-lipoic acid toward hydroxyl radical. Biochem Biophys Res Commun 208:161–167. doi:10.1006/bbrc.1995.1318

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Chan SL, Duan W (2002) Modification of brain aging and neurodegenerative disorders by genes, diet and behavior. Physiol Rev 82:637–672

    PubMed  CAS  Google Scholar 

  • Melhem MF, Craven PA, Derubertis FR (2001) Effects of dietary supplementation of α-lipoic acid on early glomerular injury in diabetes mellitus. J Am Soc Nephrol 12:124–133

    PubMed  CAS  Google Scholar 

  • Mishra OP, Papadopoulos MD, Cahillane G, Wagerle LC (1989) Lipid peroxidation as the mechanism of modification of the affinity of the Na+,K+-ATPase active sites for ATP, K+, Na+, and strophanthidin in vitro. Neurochem Res 14:845–851. doi:10.1007/BF00964813

    Article  PubMed  CAS  Google Scholar 

  • Miyake H, Kadoya A, Ohyashiki T (2003) Increase in molecular rigidity of the protein conformation of brain Na+K+-ATPase by modification with 4-hydroxy-2-nonenal. Biol Pharm Bull 26:1652–1656. doi:10.1248/bpb.26.1652

    Article  PubMed  CAS  Google Scholar 

  • Palladino MJ, Bower JE, Kreber R, Ganetzky B (2003) Neural dysfunction and neurodegeneration in drosophila Na+ /K+ ATPase alpha subunit mutants. J Neurosci 23:1276–1286

    PubMed  CAS  Google Scholar 

  • Santos MS, Moreno AJ, Carvalho AP (1996) Relationships between ATP depletion, membrane potential and the release of neurotransmitters in rat nerve terminals. An in vitro study under conditions that mimic anoxia, hypoglycemia and ischemia. Stroke 27:941–950

    PubMed  CAS  Google Scholar 

  • Sen T, Sen N, Jana S, Khan FH, Chatterjee U, Chakrabarti S (2007) Depolarization and cardiolipin depletion in aged rat brain mitochondria: relationship with oxidative stress and electron transport chain activity. Neurochem Int 50:719–725. doi:10.1016/j.neuint.2007.01.007

    Article  PubMed  CAS  Google Scholar 

  • Shacter E, Williams JA, Stadtman ER, Levine RL (1996) Determination of carbonyl groups in oxidized protein. In: Punchard NA, Kelly KJ (eds) Free radicals—a practical approach. Oxford University Press, Oxford, pp 159–170

    Google Scholar 

  • Shepherd GM (1994) Neurobiology. Oxford University Press, New York

    Google Scholar 

  • Shimasaki H (1994) Assay of fluorescent lipid peroxidation products. Methods Enzymol 233:338–346. doi:10.1016/S0076-6879(94)33039-5

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Agarwal S, Candas M, Forster MJ, Lal H (1994) Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech Ageing Dev 76:215–224. doi:10.1016/0047-6374(94)91595-4

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Ando S (1992) Age-related changes in [3H] ouabain binding to synaptic plasma membranes isolated from mouse brains. J Biochem 112:117–121

    PubMed  CAS  Google Scholar 

  • Viani P, Cervato G, Fiorilli A, Cestaro B (1991) Age-related differences in synaptosomal peroxidative damage and membrane properties. J Neurochem 56:253–258. doi:10.1111/j.1471-4159.1991.tb02589.x

    Article  PubMed  CAS  Google Scholar 

  • Vizi ES, Torok T, Seregi A, Serfozo P, Adam-Vizi V (1982) Na–K activated ATPase and the release of acetylcholine and noradrenaline. J Physiol (Paris) 78:399–406

    CAS  Google Scholar 

  • Xiao AY, Wei L, Xia S, Rothman S, Yu SP (2002) Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J Neurosci 22:1350–1362

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by a research grant from Department of Science and Technology (DST), Government of India (Ref: SR/SO/HS-05/2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasanka Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagh, M.B., Maiti, A.K., Roy, A. et al. Dietary supplementation with N-acetylcysteine, α-tocopherol and α-lipoic acid prevents age related decline in Na+,K+-ATPase activity and associated peroxidative damage in rat brain synaptosomes. Biogerontology 9, 421–428 (2008). https://doi.org/10.1007/s10522-008-9175-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-008-9175-1

Keywords

Navigation