Skip to main content
Log in

Aging epigenetics: Accumulation of errors or realization of a specific program?

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Aging in mammals is known to be accompanied by a progressive loss of methylated cytosines from DNA. This loss is tissue-specific to a certain extent and affects mainly repeated sequences, transposable elements, and intergenic genome parts. Age-dependent DNA hypomethylation is correlated with and perhaps partly caused by a diminished activity of DNA methyltransferases. Along with the global DNA demethylation during aging, hypermethylation of certain genes occurs. On the whole-genome scale, an age-dependent hypermethylation is typical for genes associated with promoter CG islands, whereas hypomethylation mostly affects CG-poor genes, besides the repeated sequences, transposable elements, and intergenic genome parts mentioned above. The methylation levels of certain CG sites display strict correlation to age and thus could be used as a molecular marker to predict biological age of cells, tissues, and organisms. Epigenetic cell reprogramming, such as induced pluripotent stem cell production, leads to complete resetting of their epigenetic age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

aDMR:

aging-associated DMR

DMR:

differentially methylated region

hyper-aDMR:

hypermethylated aDMR

hypo-aDMR:

hypomethylated aDMR

5mC:

5-methylcytosine

SNP:

single-nucleotide polymorphism

References

  1. Berdyshev, G. D., Korotaev, G. K., Boyarskikh, G. V., and Vanyushin, B. F. (1967) Nucleotide composition of DNA and RNA from somatic tissues of humpback salmon and its changes during spawning, Biokhimiya, 32, 988–993.

    CAS  Google Scholar 

  2. Vanyushin, B. F., Tkacheva, S. G., and Belozersky, A. N. (1970) Rare bases in animal DNA, Nature, 225, 948–949.

    Article  CAS  PubMed  Google Scholar 

  3. Vanyushin, B. F., Nemirovsky, L. E., Klimenko, V. V., Vasiliev, V. K., and Belozersky, A. N. (1973) The 5-methylcytosine in DNA of rats: tissue and age specificity and the changes induced by hydrocortisone and other agents, Gerontologiya (Basel), 19, 138–152.

    Article  CAS  Google Scholar 

  4. Romanov, G. A., and Vanyushin, B. F. (1981) Methylation of reiterated sequences in mammalian DNAs: effects of the tissue type, age, malignancy and hormonal induction, Biochim. Biophys. Acta, 653, 204–218.

    Article  CAS  PubMed  Google Scholar 

  5. Wilson, V. L., Smith, R. A., Mag, S., and Cutler, R. G. (1987) Genomic 5-methyldeoxycytidine decreases with age, J. Biol. Chem., 262, 9948–9951.

    CAS  PubMed  Google Scholar 

  6. Wilson, V. L., and Jones, P. A. (1983) DNA methylation decreases in aging but not in immortal cells, Science, 220, 1055–1057.

    Article  CAS  PubMed  Google Scholar 

  7. Holliday, R. (1986) Strong effects of 5-azacytidine on the in vitro lifespan of human diploid fibroblasts, Exp. Cell Res., 166, 543–552.

    Article  CAS  PubMed  Google Scholar 

  8. Fairweather, D. S., Fox, M., and Margison, G. P. (1987) The in vitro lifespan of MRC-5 cells is shortened by 5-azacytidine-induced demethylation, Exp. Cell Res., 168, 153159.

    Article  Google Scholar 

  9. Wigler, M., Levy, D., and Perucho, M. (1981) The somatic replication of DNA methylation, Cell, 24, 33–40.

    Article  CAS  PubMed  Google Scholar 

  10. Stein, R., Gruenbaum, Y., Pollack, Y., Razin, A., and Cedar, H. (1982) Clonal inheritance of the pattern of DNA methylation in mouse cells, Proc. Natl. Acad. Sci. USA, 79, 61–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lopatina, N., Haskell, J. F., Andrews, L. G., Poole, J. C., Saldanha, S., and Tollefsbol, T. (2002) Differential maintenance and de novo methylating activity by three DNA methyltransferases in aging and immortalized fibroblasts, J. Cell. Biochem., 84, 324–334.

    Article  PubMed  Google Scholar 

  12. Casillas, M. A., Lopatina, N., Andrews, L. G., and Tollefsbol, T. O. (2003) Transcriptional control of the DNA methyltransferases is altered in aging and neoplasticallytransformed human fibroblasts, Mol. Cell. Biochem., 252, 33–43.

    Article  CAS  PubMed  Google Scholar 

  13. Boyd-Kirkup, J. D., Green, C. D., Wu. G., Wang, D., and Han, J.-D. (2013) Epigenomics and the regulation of aging, Epigenomics, 5, 205–227.

    Article  CAS  PubMed  Google Scholar 

  14. So, K., Tamura, G., Honda, T., Homma, N., Waki, T., Togawa, N., Nishizuka, S., and Motoyama, T. (2006) Multiple tumor suppressor genes are increasingly methylated with age in non-neoplastic gastric epithelia, Cancer Sci., 97, 1155–1158.

    Article  CAS  PubMed  Google Scholar 

  15. Christensen, B. C., Houseman, E. A., Marsit, C. J., Zheng, S., Wrensch, M. R., Wiemels, J. L., Nelson, H. H., Karagas, M. R., Padbury, J. F., Bueno, R., Sugarbaker, D. J., Yeh, R.-F., Wiencke, J. K., and Kelsey, K. T. (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context, PLoS Genet., 5, e1000602.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Maegawa, S., Hinka, G., Kim, H. S., Shen, L., Zhang, L., Zhang, J., Zhang, N., Liang, S., Donehower, L. A., and Issa, J.-P. (2010) Widespread and tissue specific age-related DNA methylation changes in mice, Genome Res., 20, 332340.

    Article  Google Scholar 

  17. Rakyan, V. K., Down, T. A., Maslau, S., Andrew, T., Yang, T.-P., Beyan, H., Whittaker, P., McCann, O. T., Finer, S., Valdes, A. M., Leslie, R. D., Deloukas, P., and Spector, T. D. (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains, Genome Res., 20, 434–439.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Meissner, A., Mikkelsenm, T. S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., Zhang, X., Bernstein, B. E., Nusbaum, C., Jaffe, D. B., Gnirke, A., Jaenisch, R., and Lander, E. S. (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells, Nature, 454, 766–770.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Hernandez, D. G., Nalls, M. A., Gibbs, J., Arepalli, S., van der Brug, M., Chong, S., Moore, M., Longo, D. L., Cookson, M. R., Traynor, B. J., and Singleton, A. B. (2011) Distinct DNA methylation changes highly correlated with chronological age in the human brain, Hum. Mol. Genet., 20, 1164–1172.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Martino, D., Loke, Y. J., Gordon, L., Ollikainen, M., Cruickshank, M. N., Saffery, R., and Craig, J. M. (2013) Longitudinal, genome-scale analysis of DNA methylation in twins from birth to 18 months of age reveals rapid epigenetic change in early life and pair-specific effects of discordance, Genome Biol., 14, R42.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Day, K., Waite, L. L., Thalacker-Mercer, A., West, A., Bamman, M. M., Brooks, J. D., Myers, R. M., and Absher, D. (2013) Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape, Genome Biol., 14, R102.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Sinclair, D. A. (2005) Toward a unified theory of caloric restriction and longevity regulation, Mech. Ageing Dev., 126, 987–1002.

    Article  CAS  PubMed  Google Scholar 

  23. Li, Y., Liu, L., and Tollefsbol, T. O. (2010) Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression, FASEB J., 24, 1442–1453.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Wuttke, D., Connor, R., Vora, C., Craig, T., Li, Y., Wood, S., Vasieva, O., Shmookler Reis, R., Tang, F., and De Magalhaes, J. P. (2012) Dissecting the gene network of dietary restriction to identify evolutionarily conserved pathways and new functional genes, PLoS Genet., 8, e1002834.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Pogribny, I. P., and Vanyushin, B. F. (2010) Age-related genomic hypomethylation, in Epigenetics of Aging (Tollefsbol, T. O., ed.) Springer Science + Business Media, N. Y., pp. 11–27.

    Chapter  Google Scholar 

  26. Lin, M.-J., Tang, L.-Y., Reddy, M. N., and Shen, C.-K. (2005) DNA methyltransferase gene dDnmt2 and longevity of Drosophila, J. Biol. Chem., 280, 861–864.

    Article  CAS  PubMed  Google Scholar 

  27. Lyko, F., Ramsahoye, B. H., Kashevsky, H., Tudor, M., Mastrangelo, M.-A., Orr-Weaver, T. L., and Jaenisch, R. (1999) Mammalian (cytosine-5) methyltransferases cause genomic DNA methylation and lethality in Drosophila, Nat. Genet., 23, 363–366.

    Article  CAS  PubMed  Google Scholar 

  28. Okano, M., Xie, S., and Li, E. (1998) Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells, Nucleic Acids Res., 26, 25362540.

    Article  Google Scholar 

  29. Goll, M. G., and Bestor, T. H. (2005) Eukaryotic cytosine methyltransferases, Annu. Rev. Biochem., 74, 481–514.

    Article  CAS  PubMed  Google Scholar 

  30. Goll, M. G., Kirpekar, F., Maggert, K. A., Yoder, J. A., Hsieh, C.-L., Zhang, X., Golic, K. G., Jacobsen, S. E., and Bestor, T. H. (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2, Science, 311, 395–398.

    Article  CAS  PubMed  Google Scholar 

  31. Gentilini, D., Mari, D., Castaldi, D., Remondini, D., Ogliari, G., Ostan, R., Bucci, L., Sirchia, S. M., Tabano, S., Cavagnini, F., Monti, D., Franceschi, C., Di Blasio, A. M., and Vitale, G. (2013) Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians’ offspring, Age, 35, 1961–1973.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., Heine-Suner, D., Cigudosa, J. C., Urioste, M., Benitez, J., Boix-Chornet, M., SanchezAguilera, A., Ling, C., Carlsson, E., Poulsen, P., Vaag, A., Stephan, Z., Spector, T. D., Wu, Y.-Z., Plass, C., and Esteller, M. (2005) Epigenetic differences arise during the lifetime of monozygotic twins, Proc. Natl. Acad. Sci. USA, 102, 10604–10609.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Heyn, H., Li, N., Ferreira, H. J., Moran, S., Pisano, D. G., Gomez, A., Diez, J., Sanchez-Mut, J. V., Setien, F., Carmona, F. J., Puca, A. A., Sayols, S., Pujana, M. A., Serra-Musach, J., Iglesias-Platas, I., Formiga, F., Fernandez, A. F., Fraga, M. F., Heath, S. C., Valencia, A., Gut, I. G., Wang, J., and Esteller, M. (2012) Distinct DNA methylomes of newborns and centenarians, Proc. Natl. Acad. Sci. USA, 109, 10522–10527.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Bocklandt, S., Lin, W., Seh, M. E., Sanchez, F. J., Sinsheimer, J. S., Horvath, S., and Vilain, E. (2011) Epigenetic predictor of age, PLoS One, 6, e14821.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Koch, C. M., and Wagner, W. (2011) Epigenetic aging signature to determine age in different tissues, Aging, 3, 10181027.

    Google Scholar 

  36. Weidner, C. I., Lin, Q., Koch, C. M., Eisele, L., Beier, F., Ziegler, P., Bauerschlag, D. O., Jockel, K.-H., Erbel, R., Muhleisen, T. W., Zenke, M., Brummendorf, T. H., and Wagner, W. (2014) Aging of blood can be tracked by DNA methylation changes at just three CpG sites, Genome Biol., 15, R24.

  37. Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J.-B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., and Zhang, K. (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates, Mol. Cell, 49, 359–367.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Horvath, S. (2013) DNA methylation age of human tissues and cell types, Genome Biol., 14, R115.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Marioni, R. E., Shah, S., McRae, A. F., Chen, B. H., Colicino, E., Harris, S. E., Gibson, J., Henders, A. K., Redmond, P., Cox, S. R., Pattie, A., Corley, J., Murphy, L., Martin, N. G., Montgomery, G. W., Feinberg, A. P., Fallin, M. D., Multhaup, M. L., Jaffe, A. E., Joehanes, R., Schwartz, J., Just, A. C., Lunetta, K. L., Murabito, J. M., Starr, J. M., Horvath, S., Baccarelli, A. A., Levy, D., Visscher, P. M., Wray, N. R., and Deary, I. J. (2015) DNA methylation age of blood predicts all-cause mortality in later life, Genome Biol., 16, 25.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Florath, I., Butterbach, K., Muller, H., BewerungeHudler, M., and Brenner, H. (2014) Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites, Hum. Mol. Genet., 23, 1186–1201.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Surani, M. A., Hayashi, K., and Hajkova, P. (2007) Genetic and epigenetic regulators of pluripotency, Cell, 128, 747–762.

    Article  CAS  PubMed  Google Scholar 

  42. Albert, M., and Peters, A. H. (2009) Genetic and epigenetic control of early mouse development, Curr. Opin. Genet. Dev., 19, 113–121.

    Article  CAS  PubMed  Google Scholar 

  43. Zhou, L., and Dean, J. (2015) Reprogramming the genome to totipotency in mouse embryos, Trends Cell Biol., 25, 8291.

    Article  Google Scholar 

  44. Yamanaka, S., and Blau, H. M. (2010) Nuclear reprogramming to a pluripotent state by three approaches, Nature, 465, 704–712.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L., and Rando, T. A. (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment, Nature, 433, 760–764.

    Article  CAS  PubMed  Google Scholar 

  46. Villeda, S. A., Luo, J., Mosher, K. I., Zou, B., Britschgi, M., Bieri, G., Stan, T. M., Fainberg, N., Ding, Z., Eggel, A., Lucin, K. M., Czirr, E., Park, J.-S., Couillard-Despres, S., Aigner, L., Li, G., Peskind, E. R., Kaye, J. A., Quinn, J. F., Galasko, D. R., Xie, X. S., Rando, T. A., and WyssCoray, T. (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function, Nature, 477, 90–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Adler, A. S., Sinha, S., Kawahara, T. L., Zhang, J. Y., Segal, E., and Chang, H. Y. (2007) Motif module map reveals enforcement of aging by continual NF-κB activity, Genes Dev., 21, 3244–3257.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Chen, C., Liu, Y., Liu, Y., and Zheng, P. (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells, Sci. Signal., 2, ra75.

    PubMed Central  PubMed  Google Scholar 

  49. Martin, G. M. (2009) Epigenetic gambling and epigenetic drift as an antagonistic pleiotropic mechanism of aging, Aging Cell, 8, 761–764.

    Article  CAS  PubMed  Google Scholar 

  50. Rando, T. A., and Wyss-Coray, T. (2014) Stem cells as vehicles for youthful regeneration of aged tissues, J. Gerontol. A Biol. Sci. Med. Sci., 69, 39–42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ashapkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashapkin, V.V., Kutueva, L.I. & Vanyushin, B.F. Aging epigenetics: Accumulation of errors or realization of a specific program?. Biochemistry Moscow 80, 1406–1417 (2015). https://doi.org/10.1134/S0006297915110024

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297915110024

Keywords

Navigation