Skip to main content
Log in

Rhodopsin Gene Polymorphism Associated with Divergent Light Environments in Atlantic Cod

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

The spectral sensitivity of visual pigments in vertebrate eyes is optimized for specific light conditions. One of such pigments, rhodopsin (RH1), mediates dim-light vision. Amino acid replacements at tuning sites may alter spectral sensitivity, providing a mechanism to adapt to ambient light conditions and depth of habitat in fish. Here we present a first investigation of RH1 gene polymorphism among two ecotypes of Atlantic cod in Icelandic waters, which experience divergent light environments throughout the year due to alternative foraging behaviour. We identified one synonymous single nucleotide polymorphism (SNP) in the RH1 protein coding region and one in the 3′ untranslated region (3′-UTR) that are strongly divergent between these two ecotypes. Moreover, these polymorphisms coincided with the well-known panthophysin (Pan I) polymorphism that differentiates coastal and frontal (migratory) populations of Atlantic cod. While the RH1 SNPs do not provide direct inference for a specific molecular mechanism, their association with this dim-sensitive pigment indicates the involvement of the visual system in local adaptation of Atlantic cod.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antao L, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a FST-outlier method. BMC Bioinform 9:323–327

    Article  Google Scholar 

  • Beaumont M, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc Roy Soc Lond B 263:1619–1626

    Article  Google Scholar 

  • Brooker AL, Cook AM, Bentzen P, Wright JM, Doyle RW (1994) Organisation of microsatellites differs between mammals and cold-water teleost fishes. Can J Fish Aquat Sci 51:1959–1966

    Article  Google Scholar 

  • Brooks CC, Scherer PE, Cleveland K, Whittemore JL, Lodish HF, Cheatham B (2000) Pantophysin is a phosphoprotein component of adipocyte transport vesicles and associates with GLUT4-containing vesicles. J Biol Chem 275:2029–2036

    Article  PubMed  Google Scholar 

  • Chen WJ, Bonillo C, Lecointre G (2003) Repeatability of clades as criterion of reliability: a case study for molecular phylogeny of Acantomorpha (Teleostei) with large number of taxa. Mol Phylogenetics Evol 26:262–288

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Ebert D, Andrew RL (2009) Rhodopsin population genetics and local adaptation: variable dim-light vision in sand gobies is illuminated. Mol Ecol 18:4140–4142

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  Google Scholar 

  • Fevolden SE, Pogson GH (1997) Genetic divergence at the synaptophysin (Syp I) locus among Norwegian coastal and North-east Arctic populations of Atlantic cod. J Fish Biol 51:895–908

    Google Scholar 

  • Godo OR, Michalsen K (2000) Migratory behaviour of north-east Arctic cod, studied by use of data storage tags. Fish Res 48:127–140

    Article  Google Scholar 

  • Grabowski TB, Thorsteinsson V, McAdam BJ, Marteinsdottir G (2011) Evidence of segregated spawning in a single marine fish stock: sympatric divergence of ecotypes in Icelandic cod? PLoS ONE 6:e17528

    Article  PubMed Central  PubMed  Google Scholar 

  • Hemmer-Hansen J, Nielsen EE, Therkildsen NO, Taylor MI, Ogden R, Geffen A, Bekkevold D, Helyar S, Pampoulie C, Johansen T, Carvalho GR, FishPopTraceConsortium (2013) A genomic island linked to ecotype divergence in Atlantic cod. Mol Ecol 22:2653–2667

    Article  PubMed  Google Scholar 

  • Jakobsdóttir KB, Jörundsdóttir D, Skírnisdóttir S, Hjörleifsdóttir S, Hreggviðsson GÓ, Daníelsdóttir AK, Pampoulie C (2006) Nine new polymorphic microsatellite loci for the amplification of archived otolith DNA of Atlantic cod, Gadus morhua L. Mol Ecol Notes 6:336–339

    Article  Google Scholar 

  • Jerlov N (1976) Marine optics. Elsevier, Amsterdam, pp 232. ISBN 0-444-41 490-8

  • Karlsen BO, Klingan K, Emblem Å, Jørgensen TE, Jueterbock A, Furmanek T, Hoarau G, Johansen SD, Nordeide JT, Moum T (2013) Genomic divergence between the migratory and stationary ecotypes of Atlantic cod. Mol Ecol 22:5098–5111

    Article  PubMed  Google Scholar 

  • Larmuseau MHD, Vancampenhout KIM, Raeymaekers JAM, Van Houdt JKJ, Volckaert FAM (2010) Differential modes of selection on the rhodopsin gene in coastal Baltic and North Sea populations of the sand goby, Pomatoschistus minutus. Mol Ecol 19:2256–2268

    Article  PubMed  Google Scholar 

  • Lewontin RC (1964) The interaction of selection and linkage. 1. General considerations; Heterotic models. Genetics 49:49–67

    PubMed Central  PubMed  Google Scholar 

  • Lewontin RC, Kojima K (1960) The evolutionary dynamics of complex polymorphism. Evolution 14:458–472

    Article  Google Scholar 

  • Michiels N, Anthes N, Hart N, Herler J, Meixner A, Schleifenbaum F, Schulte G, Siebeck UE, Sprenger D, Wucherer M (2008) Red fluorescence in reef fish: a novel signalling mechanism? BMC Ecol 8:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller KM, Le KD, Beacham TD (2000) Development of tri- and tetranucleotide repeat microsatellite loci in Atlantic cod (Gadus morhua). Mol Ecol 9:238–239

    Article  PubMed  Google Scholar 

  • Nakamura Y, Mori K, Saitoh K, Oshima K, Mekuchi M, Sugaya T, Shigenobu Y, Ojima N, Muta S, Fujiwara A, Yasuike M, Oohara I, Hirakawa H, Chowdhury VS, Kobayashi T, Nakajima K, Sano M, Wada T, Tashiro K, Ikeo K, Hattori M, Kuhara S, Gojobori T, Inouye K (2013) Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna. Proc Natl Acad Sci 110:11061–11066

    Article  PubMed Central  PubMed  Google Scholar 

  • Nordeide JT (1998) Coastal cod and north-east Arctic cod—do they mingle at the spawning grounds in Lofoten? Sarsia 83:373–379

    Google Scholar 

  • Ólafsson K, Hjörleifsdóttir S, Pampoulie C, Hreggviðsson GÓ, Guðjónsson S (2010) Novel set of multiplex assays (SalPrint15) for efficient analysis of 15 microsatellite loci of contemporary samples of the Atlantic salmon (Salmo salar). Mol Ecol Resour 10:533–537

    Article  PubMed  Google Scholar 

  • O’Quin KE, Smith DA, Naseer Z, Schulte J, Engel SD, Loh Y-HE, Streelman JT, Boore JL, Carleton KL (2011) Divergence in cis-regulatory sequences surrounding the opsin gene arrays of African cichlid fishes. BMC Evol Biol 11:120

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Reilly PT, Canino MF, Bailey KM, Bentzen P (2000) Isolation of twenty low stutter di- and tetranucleotide microsatellites for population analyses of walleye pollock and other gadoids. J Fish Biol 56:1074–1086

    Article  Google Scholar 

  • Pálsson ÓK, Thorsteinsson V (2003) Migration patterns, ambient temperature, and growth of Icelandic cod (Gadus morhua): evidence from storage tag data. Can J Fish Aquat Sci 60:1409–1423

    Article  Google Scholar 

  • Pampoulie C, Ruzzante DE, Chosson V, Jörundsdóttir TD, Taylor L, Thorsteinsson V, Daníelsdóttir AK, Marteinsdóttir G (2006) The genetic structure of Atlantic cod (Gadus morhua) around Iceland: insight from microsatellites, the Pan I locus, and tagging experiments. Can J Fish Aquat Sci 63:2660–2674

    Article  Google Scholar 

  • Pampoulie C, Jakobsdóttir KB, Marteinsdóttir G, Thorsteinsson V (2008) Are vertical behaviour patterns related to the pantophysin locus in the Atlantic cod (Gadus morhua L.)? Behav Genet 38:76–81

    Article  PubMed  Google Scholar 

  • Parmley JL, Hurst LD (2007) How do synonymous mutations affect fitness? BioEssays 29:515–519

    Article  PubMed  Google Scholar 

  • Pogson GH, Mesa KA (2004) Positive Darwinian selection at the pantophysin (Pan I) locus in marine gadid fishes. Mol Biol Evol 2165–2175

  • Pogson GH, Mesa KA, Boutilier RG (1995) Genetic population structure and gene flow in the Atlantic cod Gadus morhua: a comparison of allozyme and nuclear RFLP loci. Genetics 139:375–385

    PubMed Central  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  PubMed  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Sarvas TH, Fevolden SE (2005) Pantophysin (Pan I) locus divergence between inshore v. offshore and northern v. southern populations of Atlantic cod in the North-east Atlantic. J Fish Biol 67:444–469

    Article  Google Scholar 

  • Shum P, Pampoulie C, Sacchi C, Mariani S (2014) Divergence by depth in an oceanic fish. PeerJ 2:e525

    Article  PubMed Central  PubMed  Google Scholar 

  • Sivasundar A, Palumbi SR (2010) Paralle amino acid replacements in the rhodopsins of the rockfishes (Sebastes spp.) associated with shifts in habitat depth. J Evol Biol 23:1159–1169

    Article  PubMed  Google Scholar 

  • Skarstein TH, Westgaard JI, Fevolden SE (2007) Comparing microsatellite variation in north-east Atlantic cod (Gadus morhua L.) to genetic structuring as revealed by the pantophysin (Pan I) locus. J Fish Biol 70:271–290

    Article  Google Scholar 

  • Skírnisdóttir S, Pampoulie C, Hauksdóttir S, Schulte I, Ólafsson K, Hreggviðsson GÓ, Hjörleifsdóttir S (2008) Characterisation of 18 new polymorphic microsatellite loci in Atlantic cod (Gadus morhua L.). Mol Ecol Resour 8:1503–1505

    Article  PubMed  Google Scholar 

  • Solé X, Guinó E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22:1928–1929

    Article  PubMed  Google Scholar 

  • Spady TC, Seehausen O, Loew ER, Jordan RC, Kocher TD, Carleton KL (2005) Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species. Mol Biol Evol 22:1412–1422

    Article  PubMed  Google Scholar 

  • Stenvik J, Wesmajervi MS, Damsgard B, Delghandi M (2006) Genotyping of pantophysin I (Pan I) of Atlantic cod (Gadus morhua L.) by allele-specific PCR. Mol Ecol Notes 6:272–275

    Article  Google Scholar 

  • Sugawara T, Terai Y, Imai H, Turner GF, Koblmuller S, Sturmbauer C, Shichida Y, Okada N (2005) Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep-water cichlids from lakes Tanganyika and Malawi. Proc Natl Acad Sci 102:5448–5453

    Article  PubMed Central  PubMed  Google Scholar 

  • Terai Y, Seehausen O, Sasaki T, Takahashi K, Mizoiri S, Sugawara T, Sato T, Watanabe M, Konijnendijk N, Mrosso HDJ, Tachida H, Imai H, Shichida Y, Okada N (2006) Divergent selection on opsins drives incipient speciation in Lake Victoria cichlids. PLoS Biol 4:e433

    Article  PubMed Central  PubMed  Google Scholar 

  • Therkildsen NO, Hemmer-Hansen J, Hedeholm RB, Wisz MS, Pampoulie C, Meldrup D, Bonanomi S, Retzel A, Olsen SM, Nielsen EE (2013) Spatiotemporal SNP analysis reveals pronounced biocomplexity at the northern range margin of the Atlantic cod Gadus morhua. Evol Appl 6:690–705

    Article  PubMed Central  PubMed  Google Scholar 

  • Thorsteinsson V, Pálsson ÓK, Jónsdóttir IG, Pampoulie C (2012) Consistency in the behaviour types of the Atlantic cod: repeatability, timing of migration and geo-location. Mar Ecol Prog Ser 462:251–260

    Article  Google Scholar 

  • Thurman HV, Trujillo AP (2004) Introductory Oceanography, 10th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Tyler PA (2003) Ecosystems of the deep oceans, 1st edn, Elsevier p 532

  • Venetianer P (2012) Are synonymous codons indeed synonymous? Biol Mol Concepts 3:21–28

    Google Scholar 

  • Warrant EJ, Locket NA (2004) Vision in the deep sea. Biol Rev 79:671–712

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Yokoyama S, Takenaka N (2004) The molecular basis of adaptive evolution of Squirrelfish rhodopsins. Mol Biol Evol 21:2071–2078

    Article  PubMed  Google Scholar 

  • Yokoyama S, Tada T, Zhang H, Britt L (2008) Elucidation of phenotypic adaptations: molecular analyses of dim-light vision proteins in vertebrates. Proc Natl Acad Sci 105:13480–13485

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the EU-project CODYSSEY (Q5RS-2002-00813) for the tagging experiment and from the Icelandic Ministry of Innovation and Fisheries (Verkefnasjóður Sjávarútvegsins grant, 2011–2014) for the genetic work.

Conflict of Interest

Christophe Pampoulie, Sigurlaug Skirnisdottir, Bastiaan Star, Sissel Jentoft, Ingibjörg G. Jónsdóttir, Einar Hjörleifsson, Vilhjálmur Thorsteinsson, Ólafur K. Pálsson, Paul R. Berg, Øivind Andersen, Steinunn Magnusdottir, Sarah J. Helyar, and Anna K. Daníelsdóttir declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

The tagging was carried out in strict accordance with the recommendations by the Icelandic Committee for Welfare of Experimental Animals, Chief Veterinary Office at the Ministry of Agriculture, Reykjavik Iceland, under a surgery permit license (No. 0304-1901) issued to V. Thorsteinsson. Informed consent was obtained from all individual participants included in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Pampoulie.

Additional information

Edited by Stephen Maxson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pampoulie, C., Skirnisdottir, S., Star, B. et al. Rhodopsin Gene Polymorphism Associated with Divergent Light Environments in Atlantic Cod. Behav Genet 45, 236–244 (2015). https://doi.org/10.1007/s10519-014-9701-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-014-9701-7

Keywords

Navigation