Skip to main content
Log in

Selective Breeding of Reduced Sensorimotor Gating in Wistar Rats

  • Original Paper
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Prepulse inhibition (PPI) of startle is an operational measure of sensorimotor gating that is reduced in some neuropsychiatric disorders (e.g. schizophrenia). Animal models have revealed insight into the neuronal and pharmacological underpinnings of PPI-deficits. Recent work has shown that a PPI-deficit can be selectively bred in Wistar rats and is already stable in the second filial generation. We here report on developmental and parametric characteristics of sensorimotor gating deficits in the 4th and 6th filial generation of male rats selectively bred for low PPI (low PPI) compared to rats with normal levels of PPI (high PPI). Low PPI rats showed significantly reduced PPI and variable startle magnitude (in pulse alone trials) along with reduced short-term habituation of startle as adults. Reduced PPI in the low PPI rats was found throughout development (tested on postnatal days 21, 35, 49, 70). PPI-deficits in the low PPI rats were evident at prepulse intensities ranging from 62–86 dB and for interstimulus intervals ranging between 30–1000 ms. These behavioral data add to a growing body of knowledge about the genetic basis of sensorimotor gating deficits and suggest that low PPI rats have potential use as an intermediate phenotype in schizophrenia research. The stable phenotype of breeding-induced PPI-deficits and reduced startle habituation indicates that PPI has strong genetic determinants and that selectively bred rats can be used for future neurophysiological, anatomical, pharmacological, and genomic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anokhin AP, Heath AC, Myers E, Ralano A, Wood S (2003) Genetic influences on prepulse inhibition of startle reflex in humans. Neurosci Lett 353:45–48

    Article  PubMed  CAS  Google Scholar 

  • Bitsios P, Giakoumaki SG (2005) Relationship of prepulse inhibition of the startle reflex to attentional and executive mechanisms in man. Int J Psychophysiol 55:229–241

    Article  PubMed  Google Scholar 

  • Bitsios P, Giakoumaki SG, Frangou S (2005) The effects of dopamine agonists on prepulse inhibition in healthy men depend on baseline PPI measures. Psychopharmacology 182:144–152

    Article  PubMed  CAS  Google Scholar 

  • Bitsios P, Giakoumaki SG, Theou K, Frangou S (2006) Increased prepulse inhibition of the acoustic startle response is associated with better strategy formation and execution times in healthy males. Neuropsychologia 44:2494–2499

    Article  PubMed  Google Scholar 

  • Braff D, Stone C, Callaway E, Geyer MA, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156:234–258

    Article  PubMed  CAS  Google Scholar 

  • Braff DL, Swerdlow NR, Geyer MA (1999) Symptom correlates of prepulse inhibition deficits in male schizophrenic patients. Am J Psychiatry 156:596–602

    PubMed  CAS  Google Scholar 

  • Cadenhead KS, Swerdlow NR, Shafer KM, Diaz M, Braff DL (2000) Modulation of the startle response and startle laterality in relatives of schizophrenic patients and in subjects with schizotypal personality disorder: evidence of inhibitory deficits. Am J Psychiatry 157:1660–1668

    Article  PubMed  CAS  Google Scholar 

  • Davis M, Rainnie D, Cassell M (1994) Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci 17:208–214

    Article  PubMed  CAS  Google Scholar 

  • Diederich K, Koch M (2004) The role of the pedunculopontine tegmental nucleus in sensorimotor gating and reward-related behavior in rats. Psychopharmacology 179:402–408

    Article  PubMed  CAS  Google Scholar 

  • Duncan GE, Moy SS, Lieberman JA, Koller BH (2006a) Effects of haloperidol, clozapine, and quetiapine on sensorimotor gating in a genetic model of reduced NMDA receptor function. Psychopharmacology 184:190–200

    Article  PubMed  CAS  Google Scholar 

  • Duncan GE, Moy SS, Lieberman JA, Koller BH (2006b) Typical and atypical antipsychotic drug effects on locomotor hyperactivity and deficits in sensorimotor gating in a genetic model of NMDA receptor hypofunction. Pharmacol Biochem Behav 85:481–491

    Article  PubMed  CAS  Google Scholar 

  • Ellenbroek BA, Geyer MA, Cools AR (1995) The behavior of APO-SUS rats in animal models with construct validity for schizophrenia. J Neurosci 15:7604–7611

    PubMed  CAS  Google Scholar 

  • Feifel D, Priebe K (2001) Vasopressin-deficient rats exhibit sensorimotor gating deficits that are reversed by subchronic haloperidol. Biol Psychiatry 50:425–433

    Article  PubMed  CAS  Google Scholar 

  • Feifel D, Priebe K (2007) The effects of cross-fostering on inherent sensorimotor gating deficits exhibited by Brattleboro rats. J Gen Psychol 134:173–182

    PubMed  Google Scholar 

  • Fendt M, Fanselow MS (1999) The neuroanatomical and neurochemical basis of conditioned fear. Neurosci Biobehav Rev 23:743–760

    Article  PubMed  CAS  Google Scholar 

  • Fendt M, Li L, Yeomans JS (2001) Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacology 156:216–224

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA (1999) Assessing prepulse-inhibition of startle in wild-type and knockout mice. Psychopharmacology 147:11–13

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, Braff DL (1987) Startle habituation and sensorimotor gating in schizophrenia and related animal models. Schiz Bull 13:643–668

    CAS  Google Scholar 

  • Geyer MA, Krebs-Thomson K, Braff DL, Swerdlow NR (2001) Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology 156:117–154

    Article  PubMed  CAS  Google Scholar 

  • Geyer MA, McIlwain KL, Paylor R (2002) Mouse genetic models for prepulse inhibition: an early review. Mol Psychiatry 7:1039–1053

    Article  PubMed  CAS  Google Scholar 

  • Giakoumaki SG, Bitsios P, Frangou S (2006) The level of prepulse inhibition in healthy individuals may index cortical modulation of early information processing. Brain Res 1078:168–170

    Article  PubMed  CAS  Google Scholar 

  • Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645

    Article  PubMed  Google Scholar 

  • Hadamitzky M, Harich S, Koch M, Schwabe K (2007) Deficient prepulse inhibition induced by selective breeding of rats can be restored by the dopamine D2 antagonist haloperidol. Behav Brain Res 177:364–367

    Article  PubMed  CAS  Google Scholar 

  • Joober R, Zarate JM, Rouleau G-A, Skamene E, Boska P (2002) Provisional mapping of quantitative trait loci modulating the acoustic startle response and prepulse inhibition of acoustic startle. Neuropsychopharmacology 27:765–781

    Article  PubMed  CAS  Google Scholar 

  • Koch M (2006) Animal models of schizophrenia. In: Koch M (ed), Animal models of neuropsychiatric diseases, Imperial College Press, London, 337–402

    Google Scholar 

  • Koch M, Fendt M (2003) Startle response modulation as a behavioral tool in neuropharmacology. Curr Neuropharmacol 1:175–185

    Article  CAS  Google Scholar 

  • Meyer-Lindenberg A, Weinberger DR (2006) Intermediate phenotypes and genetic mechanisms of psychiatric diseases. Nature Rev Neurosci 7:818–827

    Article  CAS  Google Scholar 

  • Olivier B, Leahy C, Mullen T, Paylor R, Groppi VE, Sarnyai Z, Brunner D (2001) The DBA/2J strain and prepulse inhibition of startle: a model system to test antipsychotics? Psychopharmacology 156:284–290

    Article  PubMed  CAS  Google Scholar 

  • Palmer AA, Breen LL, Flodman P, Conti LH, Spence MA, Printz MP (2003) Identification of quantitative trait loci for prepulse inhibition in rats. Psychopharmacology 165:270–279

    PubMed  CAS  Google Scholar 

  • Schwarzkopf SB, McCoy C, Smith DA, Boutros NN (1993) Test-retest reliability of prepulse inhibition of the acoustic startle response. Biol Psychiatry 34:896–890

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology 156:194–215

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Martinez ZA, Hanlon FM, Platten A, Farid M, Auerbach P, Braff DL, Geyer MA (2000) Toward understanding the biology of a complex phenotype: rat strain and substrain differences in the sensorimotor gating-disruptive effects of dopamine agonists. J Neurosci 20:4325–4336

    PubMed  CAS  Google Scholar 

  • Swerdlow NR, Shoemaker JM, Auerbach PP, Pitcher L, Goins J, Platten A (2004a) Heritable differences in the dopaminergic regulation of sensorimotor gating. II. Temporal, pharmacologic and generational analyses of apomorphine effects on prepulse inhibition. Psychopharmacology 174:452–462

    PubMed  CAS  Google Scholar 

  • Swerdlow NR, Shoemaker JM, Crain S, Goins J, Onozuka K, Auerbach PP (2004b) Sensitivity to drug effects on prepulse inhibition in inbred and outbred rat strains. Pharmacol Biochem Behav 77:291–302

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Shoemaker JM, Platten A, Pitcher L, Goins J, Auerbach PP (2004c) Heritable differences in the dopaminergic regulation of sensorimotor gating. I. Apomorphine effects on startle gating in albino and hooded outbred rat strains and their F1 and N2 progeny. Psychopharmacology 174:441–451

    Article  PubMed  CAS  Google Scholar 

  • van der Elst MC, Ellenbroek BA, Cools AR (2006) Cocaine strongly reduces prepulse inhibition in apomorphine-susceptible rats, but not in apomorphine-unsusceptible rats: regulation by dopamine D2 receptors. Behav Brain Res 175:392–398

    Article  PubMed  CAS  Google Scholar 

  • Weike AI, Bauer U, Hamm AO (2000) Effective neuroleptic medication removes prepulse inhibition deficits in schizophrenia patients. Biol Psychiatry 47:61–70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Steffen Klein for his help with this study. Kerstin Schwabe and Florian Freudenberg contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Koch.

Additional information

Edited by Stephen Maxson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwabe, K., Freudenberg, F. & Koch, M. Selective Breeding of Reduced Sensorimotor Gating in Wistar Rats. Behav Genet 37, 706–712 (2007). https://doi.org/10.1007/s10519-007-9166-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-007-9166-z

Keywords

Navigation