Skip to main content

Advertisement

Log in

Strategy of Pharmacological Regulation of Intracellular Signal Transduction in Regeneration-Competent Cells

  • PHARMACOLOGY AND TOXICOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The study focuses on the development of principally novel priority-oriented healthcare strategy targeted therapy in regenerative medicine known as Strategy of Pharmacological Control over Intracellular Signal Transduction in Regeneration-Competent Cells. It implies selective action of promising drugs on specific key elements in the signaling cascade responsible for functional activity of various progenitor cells (including stem cells) and elements of tissue microenvironment. The results of pioneer studies are described that were aimed on revealing the peculiarities in signal transduction and the role of distinct signaling molecules (the potential targets) in the control of cell cycle and other functions of progenitor elements and regulatory cells of different types. The models of some pathological states were employed to demonstrate the possibility of effective implementation of the advanced pharmacotherapeutic concept. The developed theoretical and applied platform can be used to launch synthesis of principally novel preparations with regenerative activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babaeva AG. Regeneration: Facts and Perspective. Moscow, 2009. Russian.

  2. Voronina TA, Seredenin SB. Nootropes (cognition enhancers) and neuroprotectors. Eksp. Klin. Farmakol. 2007;70(4):44-58. Russian.

  3. Goldberg ED, Dygai AM, Zyuz’kov GN. Hypoxia and Blood System. Tomsk, 2006. Russian.

  4. Dygai AM, Artamonov AV, Bekarev AA, Zhdanov VV, Zyuz’kov GN, Madonov PG, Udut VV. Nanotechnologies in Pharmacology. Moscow, 2011. Russian.

  5. Dygai AM, Zhdanov VV, Goldberg VE, Zyuz’kov GN, Udut EV, Khrichkova TYu, Simanina EV, Miroshnichenko LA, Stavrova LA. Methodical recommendations for studying hemostimulating activity of pharmacological substances. Manual for Preclinical Studies of New Pharmacological Substances. Part I, Mironov AN, ed. Moscow, 2012. P. 759-766. Russian.

  6. Dygai AM, Zyuz’kov GN. Cell therapy: new approaches. Nauka Rossii. 2009;169(1):4-8. Russian.

    Google Scholar 

  7. Dygai AM, Zyuz’kov GN, Zhdanov VV, Udut EV, Khrichkova TYu, Miroshnichenko LA, Simanina EV, Stavriva LA. Methodical recommendations for studying specific activity of agents for regenerative medicine. Manual for Preclinical Studies of New Pharmacological Substances. Mironov AN, ed. Moscow, 2013. Part I. P. 776-787. Russian.

  8. Dygai AM, Semchenko VV, Lebedev IN, Ereniev SI, Stepanov SS, Leont’ev VK, Yarygin KN, Zhdanov VV, Petrovskii FI, Baimatov VN, Nazarenko MS, Nikolaev NA. Regeneration Biology and Medicine. Book III. Cell Technologies in Clinical Medicine. Omsk, 2017. Russian.

  9. Zyuz’kov GN, Suslov NI, Povet’eva TN, Nesterova YV, Afanas’eva OG, Udut EV, Miroshnichenko LA, Simanina EV, Polyakova TY, Stavrova LA, Chaikovskii AV, Kul’pin PV, Udut VV, Dygai AM, Zhdanov VV. Psychopharmacological Effects of JNK Inhibitor in Posthypoxic Encephalopathy and Mechanisms of Their Development. Bull. Exp. Biol. Med. 2017;163(1):18-21.

    Article  CAS  PubMed  Google Scholar 

  10. Zyuz’kov GN, Udut EV, Miroshnichenko LA, Polyakova TYu, Chaikovskii AV, Firstova OA, Lopatina KA, Safonova EA. Potential bivalency of cAMP-mediated signaling in stromal progenitor cells of the hemopoiesis-inducing microenvironment. Eskp. Klin. Farmakol. 2017;80(6, Suppl):13. Russian.

  11. Zyuz’kov GN, Udut EV, Miroshnichenko LA, Polyakova TYu, Zhdanov VV, Udut VV. Strategy of pharmacological regulation of intracellular signal transduction in regeneration-competent cells. Geny Kletki. 2017;12(3):102-103. Russian.

    Google Scholar 

  12. Kurakova NG, Tsvetkova LA, Arefiev PG. New tools for analysis and forecasting of research strategies in the global science. Naukoved. Issled. 2012;(2012):65-86. Russian.

    Google Scholar 

  13. Mashkovskii MD. Drugs. Moscow, 2008. Russian.

  14. Zyuzkov GN, Zhdanov VV, Danilets MG, Miroshnichenko LA, Udut EV, Dygaj AM. Patent RU No. 2599289. Tissue regeneration stimulating agent. Bull. No. 28. Published October 10, 2016.

  15. Zyuzkov GN, Udut EV, Miroshnichenko LA, Polyakova TY, Simanina EV, Stavrova LA, Zhdanov VV, Chajkovskij AV. Patent RU No. 2647833. Hemostimulating agent. Bull. No. 8. Published March 19, 2018.

  16. Registry of medicinal products of the Russian Federation. Encyclopedia of medicines. Moscow, 2011. Russian.

  17. Serggev PV, Shimanoskii NL, Petrov VI. Receptors of Physiologically Active Substances. Volgograd, 1999. Russian.

  18. Cytokine System. Theoretical and Clinical Aspects. Kozlov VA, Sennikov SV, eds. Novosibirsk, 2004. Russian.

  19. Starodubov VI, Kuznezov SL, Kurakova NG, Tsvetkova LA, Arefiev PG. World level of competitiveness of national researches in the field of clinical medicine. Vestn. Ross. Akad. Med. Nauk. 2012;67(6):27-35. Russian.

    Article  Google Scholar 

  20. Sukhikh GT, Malaitsev VV, Bogdanova IM, Dubrovina IV. Mesenchymal stem cells. Bull. Exp. Biol. Med. 2002;133(2):103-109.

  21. Atochin DN, Schepetkin IA, Khlebnikov AI, Seledtsov VI, Swanson H, Quinn MT, Huang PL. A novel dual NO-donating oxime and c-Jun N-terminal kinase inhibitor protects against cerebral ischemia-reperfusion injury in mice. Neurosci. Lett. 2016;618:45-49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M, Toietta G. Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int. J. Mol. Sci. 2017;18(10). pii: E2087. doi: https://doi.org/10.3390/ijms18102087.

  23. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat. Rev. Cancer. 2011;11(4):268-277.

    Article  CAS  PubMed  Google Scholar 

  24. Biancotti JC, Benvenisty N. Aneuploid human embryonic stem cells: origins and potential for modeling chromosomal disorders. Regen. Med. 2011;6(4):493-503.

    Article  PubMed  Google Scholar 

  25. Faustino C, Rijo P, Reis CP. Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer’s disease. Pharmacol. Res. 2017;120:68-87.

    Article  CAS  PubMed  Google Scholar 

  26. Halpin DM. ABCD of the phosphodiesterase family: interaction and differential activity in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2008;3(4):543-561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hariri R, Stirling D, Zeldis J. Methods of using JNK or MKK inhibitors to modulate cell differentiation and to treat myeloproliferative disorders and myelodysplastic syndromes. Patent US 20040028660, 2004.02.12.

    Google Scholar 

  28. Koniusz S, Andrzejewska A, Muraca M, Srivastava AK, Janowski M, Lukomska B. Extracellular vesicles in physiology, pathology, and therapy of the immune and central nervous system, with focus on extracellular vesicles derived from mesenchymal stem cells as therapeutic tools. Front. Cell. Neurosci. 2016;10:109. doi: https://doi.org/10.3389/fncel.2016.00109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lacroix M. Targeted Therapies in Cancer. Hauppauge, New York, 2014.

    Google Scholar 

  30. Lai RC, Chen TS, Lim SK. Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen. Med. 2011;6(4):481-492.

    Article  PubMed  Google Scholar 

  31. Leonard WJ, O’Shea JJ. Jaks and STATs: biological implications. Annu. Rev. Immunol. 1998;16:293-322.

    Article  CAS  PubMed  Google Scholar 

  32. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912-1934.

    Article  CAS  PubMed  Google Scholar 

  33. Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp. Biol. Med. (Maywood). 2001;226(6):507-520.

    Article  CAS  PubMed  Google Scholar 

  34. Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V, Seo BM, Sonoyama W, Zheng JJ, Baker CC, Chen W, Ried T, Shi S. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells. 2006;24(4):1095-1103.

    Article  PubMed  Google Scholar 

  35. Propper DJ, Saunders MP, Salisbury AJ, Long L, O’Byrne KJ, Braybrooke JP, Dowsett M, Taylor M, Talbot DC, Ganesan TS, Harris AL. Phase I study of the novel cyclic AMP (cAMP) analogue 8-chloro-cAMP in patients with cancer: toxicity, hormonal, and immunological effects. Clin. Cancer Res. 1999;5(7):1682-1689.

    CAS  PubMed  Google Scholar 

  36. Schu S, Nosov M, O’Flynn L, Shaw G, Treacy O, Barry F, Murphy M, O’Brien T, Ritter T. Immunogenicity of allogeneic mesenchymal stem cells. J. Cell. Mol. Med. 2012;16(9):2094-2103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Spaggiari GM, Capobianco A, Becchetti S, Mingari M.C, Moretta L. Mesenchymal stem cell-natural killer cell interactions: Evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 2006;107(4):1484-1490.

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, An R, Dong X, Pan S, Duan G, Sun X. Protein kinase C is involved in arsenic trioxide-induced apoptosis and inhibition of proliferation in human bladder cancer cells. Urol. Int. 2009;82(2):214-221.

    Article  CAS  PubMed  Google Scholar 

  39. Zyuz’kov GN, Danilets MG, Ligacheva AA, Zhdanov VV, Udut EV, Miroshnichenko LA, Chaikovskii AV, Simanina EV, Mova ES, Minakova MY, Losev EA, Udut VV, Dygai AM. Role of NF-κB-dependent signaling in the growth capacity of mesenchymal progenitor cells under the influence of basic fibroblast growth factor. Bull. Exp. Biol. Med. 2014;157(3):353-356.

    Article  CAS  PubMed  Google Scholar 

  40. Zyuz’kov GN, Zhdanov VV, Miroshnichenko LA, Udut EV, Chaikovskii AV, Simanina EV, Danilets MG, Minakova MY, Udut VV, Tolstikova TG, Shults EE, Stavrova LA, Burmina YV, Dygai AM. Involvement of PI3K, MAPK ERK1/2 and p38 in functional stimulation of mesenchymal progenitor cells by alkaloid songorine. Bull. Exp. Biol. Med. 2015;159(1):58-61.

    Article  CAS  PubMed  Google Scholar 

  41. Zyuz’kov GN, Zhdanov VV, Udut EV, Miroshnichenko LA, Chaikovskii AV, Simanina EV, Polyakova TY, Minakova MY, Udut VV, Tolstikova TG, Shul’ts EE, Stavrova LA, Burmina YV, Suslov NI, Dygai AM. Role of cAMP- and IKK-2-dependent signaling pathways in functional stimulation of mesenchymal progenitor cells with alkaloid songorine. Bull. Exp. Biol. Med. 2015;159(5):642-645.

    Article  CAS  PubMed  Google Scholar 

  42. Zyuz’kov GN, Zhdanov VV, Udut EV, Miroshnichenko LA, Khrichkova TY, Danilets MG, Simanina EV, Chaikovskii AV, Agafonov VI, Sherstoboev EY, Minakova MY, Burmina YV, Udut VV, Dygai AM. Role of JNK and contribution of p53 to the realization of the growth potential of mesenchymal precursor cells under the effect of fibroblast growth factor. Bull. Exp. Biol. Med. 2015;159(4):479-481.

    Article  CAS  PubMed  Google Scholar 

  43. Zyuz’kov GN, Zhdanov VV, Udut EV, Miroshnichenko LA, Simanina EV, Polyakova TY, Stavrova LA, Udut VV, Minakova MY, Dygai AM. Involvement of JAK1, JAK2, and JAK3 in stimulation of functional activity of mesenchymal progenitor cells by fibroblast growth factor. Bull. Exp. Biol. Med. 2016;162(2):240-243.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Zyuz’kov.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 166, No. 10, pp. 435-445, October, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zyuz’kov, G.N., Zhdanov, V.V., Udut, E.V. et al. Strategy of Pharmacological Regulation of Intracellular Signal Transduction in Regeneration-Competent Cells. Bull Exp Biol Med 166, 448–455 (2019). https://doi.org/10.1007/s10517-019-04370-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-019-04370-x

Key Words

Navigation