Skip to main content
Log in

Role of heat shock proteins HSP70 and HSP32 in the protective effect of adaptation of cultured HT22 hippocampal cells to oxidative stress

  • General Pathology and Pathophysiology
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Abstract

Preadaptation of cultured HT22 mouse hippocampal neurons to oxidative stress prevented cell damage induced by severe oxidative stress. This protection manifested in a decrease in metabolic disturbances in neurons. Adaptation of neurons to oxidative stress was accompanied by accumulation of HSP32 and HSP70. HSP synthesis inhibitor quercetin abolished the protective effect of adaptation under conditions of oxidative stress. Activation of HSP70 synthesis in neurons is an important mechanism for adaptive protection of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. V. Arkhipenko, T. G. Sazontova, and A. G. Zhukova, Byull. Eksp. Biol. Med., 140, No. 9, 257–260 (2005).

    Google Scholar 

  2. E. B. Manukhina, F. Viegant, V. I. Torshin, et al., Izv. Akad. Nauk. Ser. Biol., No. 4, 465–480 (2004).

  3. F. Z. Meerson, Adaptive Medicine: Mechanisms and Protective Effects of Adaptation [in Russian], Moscow (1993).

  4. M. G. Pshennikova, E. V. Popkova, I. P. Khomenko, et al., Byull. Eksp. Biol. Med., 139, No. 5, 491–494 (2005).

    Article  Google Scholar 

  5. Z. H. Chen, Y. Yoshida, Y. Saito, and E. Niki, Neurosci. Lett., 383, No. 3, 256–259 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. L. A. Gomez, A. E. Alekseev, L. A. Aleksandrova, et al., J. Mol. Cell. Cardiol., 29, No. 4, 1255–1266 (1997).

    Article  PubMed  CAS  Google Scholar 

  7. U. K. Laemmli, Nature, 227, 680–685 (1970).

    Article  PubMed  CAS  Google Scholar 

  8. I. Yu. Malyshev, L. A. Bayda, A. I. Trifonov, et al., Physiol. Res., 49, No. 11, 99–105 (2000).

    PubMed  CAS  Google Scholar 

  9. B. H. Morimoto and D. E. Koshland, Neuron, 5, No. 6, 875–880 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. G. Perry, A. D. Cash, and M. A. Smith, J. Biomed. Biotechnol., 2, No. 3, 120–123 (2002).

    Article  PubMed  Google Scholar 

  11. O. G. Rossler, I. Bauer, H. Y. Chung, and G. Thiel, Neurosci. Lett., 362, No. 3, 253–257 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. Y. Sagara, S. Hendler, S. Khoh-Reiter, et al., J. Neurochem., 73, No. 6, 2524–2530 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. B. Y. Wu and A. C. Yu, J. Neurosci. Res., 62, No. 5, 730–736 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. M. A. Yenari, J. Liu, Z. Zheng, et al., Ann. N. Y. Acad. Sci., 1053, 74–83 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Khomenko.

Additional information

__________

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 144, No. 8, pp. 138–142, August, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khomenko, I.P., Bakhtina, L.Y., Zelenina, O.M. et al. Role of heat shock proteins HSP70 and HSP32 in the protective effect of adaptation of cultured HT22 hippocampal cells to oxidative stress. Bull Exp Biol Med 144, 174–177 (2007). https://doi.org/10.1007/s10517-007-0282-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-007-0282-9

Key Words

Navigation