Skip to main content
Log in

Analyzing dexterous hands using a parallel robots framework

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Dexterous, within-hand manipulation, in which an object held in the fingertips is manipulated by the fingers, shares many similarities with parallel robots. However, their mathematical formulations appear to be substantially different. This paper introduces a formulation typical from parallel manipulators to model the kinetostatics of a hand-plus-object system, including the fingertip forces formulation to describe a feasible grasp. The framework also includes compliance in the joint and considers pulling cable transmission mechanisms to model underactuated hands. The resultant static equilibrium equations are equivalent to the typical grasping formulation, but the involved matrices are different, allowing the interpretation of the resulting Jacobian matrix in terms of wrenches exerted by the joints.We primarily focus our efforts on describing in detail the theoretical framework, and follow this with an example application using a three-fingered underactuated hand. We show how the natural redundancy present in fully-actuated hands can be eliminated using underactuation, leading to simplified non-redundant systems that are easier to control. For the studied hand, we show how to use the framework to analyze the design parameters involved in the underactuation and their relationship with the resultant feasible workspace where the object can be manipulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. All the coordinates are with respect to the palm reference frame.

References

  • Balasubramanian, R., Belter, J. T., & Dollar, A. M. (2012). Disturbance response of two-link underactuated serial-link chains. Journal of Mechanisms and Robotics, 4(2), 021013.

    Article  Google Scholar 

  • Bicchi, A., Melchiorri, C., & Balluchi, D. (1995). On the mobility and manipulability of general multiple limb robots. IEEE Transactions on Robotics and Automation, 11(2), 215–228.

    Google Scholar 

  • Birglen, L., Laliberte, T., & Gosselin, C. (2008). Underactuated Robotic Hands. New York: Springer.

    MATH  Google Scholar 

  • Borràs, J., & Dollar, A. M. (2012). Static analysis of parallel robots with compliant joints for in-hand manipulation. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Portugal.

  • Borràs, J., & Dollar, A. M. (2013a). Framework comparison between a multifingered hand and a parallel manipulator. Proceedings of the International Workshop on Computational Kinematics, Barcelona.

  • Borràs, J., & Dollar, A. M. (2013b). A parallel robots framework to study precision grasping and dexterous manipulation. Proceedings of the IEEE International Conference on Robotics and Automation.

  • Cui, L., & Dai, J. S. (2012). Reciprocity-based singular value decomposition for inverse kinematic analysis of the metamorphic multifingered hand. Journal of Mechanisms and Robotics, 4(3), 034502.

    Article  Google Scholar 

  • Dai, J. S., & Jones, J. R. (2001). Interrelationship betwen screw systems and corresponding reciprocal systems and applications. Mechanism and Machine Theory, 36(5), 633-651.

    Google Scholar 

  • Dai, J. S., Wang, D., & Cui, L. (2009). Orientation and workspace analysis of the multifingered metamorphic hand–metahand. IEEE Transactions on Robotics, 25(4), 942–947.

    Article  Google Scholar 

  • Dasgupta, B., & Mruthyunjaya, T. S. (1998). Force redundancy in parallel manipulators: Theory and practical issues. Mechanism and Machine Theory, 33(6), 727–742.

    Article  MATH  MathSciNet  Google Scholar 

  • Denavit, J., & Hartenberg, R. S. (1955). A kinematic notation for lower-pair mechanisms based on matrices. ASME Journal of Applied Mechanics, 23, 215–221.

    MathSciNet  Google Scholar 

  • Dollar, A. M., & Howe, R. D. (2010). The highly adaptive SDM hand: Design and performance evaluation. The International Journal of Robotics Research, 29(5), 585–597.

    Article  Google Scholar 

  • Downing, D., Samuel, A., & Hunt, K. (2002). Identification of the special configurations of the octahedral manipulator using the pure condition. The International Journal of Robotics Research, 21(2), 147–159.

    Article  Google Scholar 

  • Ebert-Uphoff, I., & Voglewede, P. A. (2004). On the connections between cable-driven robots, parallel manipulators and grasping. Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans: Parallel Manipulators and Grasping.

  • Gibson, C. G., & Hunt, K. H. (1990). Geometry of screw systems—2: Classification of screw systems. Mechanism and Machine Theory, 25(1), 11–27.

    Article  Google Scholar 

  • Gosselin, C., & Angeles, J. (1990). Singularity analysis of closed-loop kinematic chains. IEEE Transactions on Robotics and Automation, 6(3), 281–290.

    Article  Google Scholar 

  • Hirose, S., & Umeteni, Y. (1978). The development of Soft Gripper for the Versatile Robot Hand. Mechanism and Machine Theory, 13, 351–359.

    Article  Google Scholar 

  • Hubert, J., & Merlet, J. P. (2004). Singularity analysis through static analysis. Paper presented at the advances in robot kinematics.

  • Hubert, J., & Merlet, J. P. (2009). Static of parallel manipulators and closeness to singularity. Journal of Mechanisms and Robotics, 1(1), 011011.

    Article  Google Scholar 

  • Hunt, K. H., Samuel, A. E., & McAree, P. R. (1991). Special configurations of multi-finger multi- freedom grippers—A kinematic study. The International Journal of Robotics Research, 10(2), 123–134.

    Article  Google Scholar 

  • Kanaan, D., Wenger, W., Caro, S., & Chablat, D. (2009). Singularity analysis of lower mobility parallel manipulators using Grassmann-Cayley algebra. IEEE Transactions on Robotics, 25(5), 995–1004.

    Google Scholar 

  • Kerr, J., & Roth, B. (1986). Analysis of multifingered hands. The International Journal of Robotics Research, 4(3), 3–17.

    Article  Google Scholar 

  • Mason, M. T., & Salisbury, J. K. (1985). Robot Hands and the Mechanics of Manipulation. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Merlet, J. P. (2006a). Jacobian, manipulability, condition number, and accuracy of parallel robots. Journal of Mechanical Design, 128(1), 199–206.

    Article  Google Scholar 

  • Merlet, J. P. (2006b). Parallel robots (2nd ed.). New York: Springer.

    MATH  Google Scholar 

  • Mohamed, M. G., & Duffy, J. (1985). A direct determination of the instantaneous kinematics of fully parallel robot manipulators. Journal of Mechanisms Transmissions and Automation in Design, 107, 226–229.

    Article  Google Scholar 

  • Mohamed, M. G., & Gosselin, C. M. (2005). Design and analysis of kinematically redundant parallel manipulators with configurable platforms. IEEE Transactions on Robotics, 21(3), 277–287.

    Article  Google Scholar 

  • Montana, D. J. (1995). The kinematics of multi-fingered manipulation. IEEE Transactions on Robotics and Automation, 11(4), 491–503.

    Article  Google Scholar 

  • Müller, A. (2008). Redundant actuation of parallel manipulators. In H. Wu (Ed.), Parallel Manipulators, towards new applications. Vienna: I-Tech Education and Publishing.

    Google Scholar 

  • Murray, R. M., Li, Z., & Sastry, S. S. (1994). A mathematical introduction to robotic manipulation. Boca Raton: CRC Press.

    MATH  Google Scholar 

  • Prattichizzo, D., & Trinkle, J. C. (2008). Grasping. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics (pp. 671–700). Berlin: Springer.

    Chapter  Google Scholar 

  • Romdhane, L., & Duffy, J. (1990). Kinestatic analysis of multifingered hands. The International Journal of Robotics Research, 9(6), 3–18.

    Article  Google Scholar 

  • Salisbury, J. K., & Craig, J. J. (1982). Articulated hands: force control and kinematic issues. The International Journal of Robotics Research, 1(1), 4–17.

    Article  Google Scholar 

  • Shimoga, K. B. (1996). Robot grasp synthesis algorithms: A survey. The International Journal of Robotics Research, 15(3), 230–266.

    Google Scholar 

  • Smit, G., & Plettenburg, D. H. (2010). Efficiency of voluntary closing hand and hook prostheses. Prosthetics and Orthotics International, 34(4), 411–427.

    Article  Google Scholar 

  • Townsend, W. (2000). The BarrettHand grasper—Programmably flexible part handling and assembly. Industrial Robot: An International Journal, 27, 181–188.

    Article  Google Scholar 

  • Tsai, L.-W. (1999). Robot Analysis. The mechanics of serial and parallel manipulators. New York: Wiley.

    Google Scholar 

  • Zhao, J., Li, B., Yang, X., & Yu, H. (2009). Geometrical method to determine the reciprocal screws and applications to parallel manipulators. Robotica, 27(06), 929.

    Article  Google Scholar 

  • Zlatanov, D. (1998). Generalized singularity analysis of mechanisms. Toronto: University of Toronto.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation, grant IIS-0952856.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlia Borràs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borràs, J., Dollar, A.M. Analyzing dexterous hands using a parallel robots framework. Auton Robot 36, 169–180 (2014). https://doi.org/10.1007/s10514-013-9380-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-013-9380-x

Keywords

Navigation