Skip to main content
Log in

The Effect of a Density-Dependent Bag Constant on the Structure of a Hot Neutron Star with a Quark Core

  • Published:
Astrophysics Aims and scope

As we go from the center toward the surface of a neutron star, the state of baryonic matter changes from the deconfined quark-gluon to a mixed phase of quark and hadronic matter and a thin crust of hadronic matter. For the quark matter, within the MIT bag model, the total energy density of the system is the kinetic energy for noninteracting quarks plus a bag constant. In this article we consider a density-dependent bag constant obtained using the recent experimental results of CERN SPS on the formation of a quarkgluon plasma. For calculations of the hadron phase, we use the lowest-order constrained variational method. The equation of state of the mixed phase is determined using Gibbs conditions. Finally, we calculated the structure of a hot neutron star with quark core employing the TOV equation. Our results show that a density-dependent bag constant leads to a higher mass and lower radius for the hot neutron star with respect to the case where we use a fixed bag constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Burrows and J. M. Lattimer, Astrophys. J., 307, 178, 1986.

    Article  ADS  Google Scholar 

  2. N. K. Glendenning, Phys. Rev., D46, 1274, 1992.

    ADS  Google Scholar 

  3. A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, Phys. Rev., D9, 3471, 1974.

    MathSciNet  ADS  Google Scholar 

  4. J. Rafelsky and B. Muller, Phys. Rev. Lett., 48, 1066, 1982.

    Article  ADS  Google Scholar 

  5. T. Matsuiand and H. Satz, Phys. Lett., B178, 416, 1986.

    ADS  Google Scholar 

  6. J. Cleymans, R. V. Gavai, and E. Suhonen, Phys. Rep., 130, 217, 1986.

    Article  ADS  Google Scholar 

  7. G. F. Burgio, M. Baldo, P. K. Sahu, and H.-J. Schulze, Phys. Rev., C66, 025802, 2002.

    ADS  Google Scholar 

  8. G. F. Burgio, M. Baldo, O. E. Nicotra, and H.-J. Schulze, Astrophys. J. Suppl. Ser., 308, 387, 2007.

    Google Scholar 

  9. G. H. Bordbar, M. Bigdeli, and T. Yazdizadeh, Int. J. Mod. Phys., A21, 5991, 2006.

    ADS  Google Scholar 

  10. G. H. Bordbar and M. Hayati, Int. J. Mod. Phys., A21, 1555, 2006.

    ADS  Google Scholar 

  11. T. Yazdizadeh and G. H. Bordbar, Res. Astron. Astrophys., 11, 471, 2011.

    Article  ADS  Google Scholar 

  12. G. H. Bordbar and M. Modarres, J. Phys. G: Nucl. Phys., 23, 1631, 1997.

    Article  ADS  Google Scholar 

  13. G. H. Bordbar and M. Modarres, Phys. Rev., C57, 714, 1998.

    ADS  Google Scholar 

  14. M. Modarres and G. H. Bordbar, Phys. Rev., C58, 2781, 1998.

    ADS  Google Scholar 

  15. G. H. Bordbar and M. Bigdeli, Phys. Rev., C75, 045804, 2007.

    ADS  Google Scholar 

  16. G. H. Bordbar and M. Bigdeli, Phys. Rev., C76, 035803, 2007.

    ADS  Google Scholar 

  17. G. H. Bordbar and M. Bigdeli, Phys. Rev., C77, 015805, 2008.

    ADS  Google Scholar 

  18. G. H. Bordbar and M. Bigdeli, Phys. Rev., C78, 054315, 2008.

    ADS  Google Scholar 

  19. M. Bigdeli, G. H. Bordbar, and Z. Rezaei, Phys. Rev., C80, 034310, 2009.

    ADS  Google Scholar 

  20. E. Farhi and R. L. Jaffe, Phys. Rev., D30, 2379, 1984.

    ADS  Google Scholar 

  21. U. Heinz and M. Jacobs, nucl-th/0002042.

  22. U. Heinz, Nuch. phys., A685, 414, 2001.

    Article  ADS  Google Scholar 

  23. C. Adami and G. E. Brown, Phys. Rep., 234, 1, 1993.

    Article  ADS  Google Scholar 

  24. D. Blaschke, H. Grigorian, G. Poghosyan, C. D. Roberts, and S. Schmidt, Phys. Lett., B450, 207, 1999.

    ADS  Google Scholar 

  25. M. Baldo, G. F. Burgio, and H.-J. Schulze, Superdense QCD Matter and Compact Stars NATO Sci. Ser., Vol. 197, Part II, 113, 2006.

  26. G. F. Burgio, M. Baldo, P. K. Sahu, A. B. Santra, and H.-J. Schulze, Phys. Lett., B526, 19, 2002.

    ADS  Google Scholar 

  27. S. L. Shapiro and S. A. Teukolski, Black Holes, White Dwarfs and Neutron Stars, New York, 1983.

    Google Scholar 

  28. N. K. Glendenning, Compact Star, Nuclear Physics, Particle Physics and General Relativity, Springer, New York, 2nd ed., 2000.

    Google Scholar 

  29. F. Weber, Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics, Institute of Physics, Bristol, 1999.

    Google Scholar 

  30. G. Baym, C. Pethick, and P. Sutherland, Astrophys. J., 170, 299, 1971.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yazdizadeh.

Additional information

Published in Astrofizika, Vol. 56, No. 1, pp. 134–141 (February 2013).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yazdizadeh, T., Bordbar, G.H. The Effect of a Density-Dependent Bag Constant on the Structure of a Hot Neutron Star with a Quark Core. Astrophysics 56, 121–129 (2013). https://doi.org/10.1007/s10511-013-9272-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-013-9272-y

Keywords

Navigation