Skip to main content
Log in

Shaping the solar wind temperature anisotropy by the interplay of electron and proton instabilities

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

A variety of nonthermal characteristics like kinetic, e.g., temperature, anisotropies and suprathermal populations (enhancing the high energy tails of the velocity distributions) are revealed by the in-situ observations in the solar wind indicating quasistationary states of plasma particles out of thermal equilibrium. Large deviations from isotropy generate kinetic instabilities and growing fluctuating fields which should be more efficient than collisions in limiting the anisotropy (below the instability threshold) and explain the anisotropy limits reported by the observations. The present paper aims to decode the principal instabilities driven by the temperature anisotropy of electrons and protons in the solar wind, and contrast the instability thresholds with the bounds observed at 1 AU for the temperature anisotropy. The instabilities are characterized using linear kinetic theory to identify the appropriate (fastest) instability in the relaxation of temperature anisotropies \(A_{e,p} = T_{e,p,\perp}/ T _{e,p,\parallel} \ne1\). The analysis focuses on the electromagnetic instabilities driven by the anisotropic protons (\(A_{p} \lessgtr1\)) and invokes for the first time a dynamical model to capture the interplay with the anisotropic electrons by correlating the effects of these two species of plasma particles, dominant in the solar wind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bale, S., Kasper, J., Howes, G., Quataert, E., Salem, C., Sundkvist, D.: Phys. Rev. Lett. 103(21), 211101 (2009)

    Article  ADS  Google Scholar 

  • Christon, S.P., Williams, D.J., Mitchell, D.G., Frank, L.A., Huang, C.Y.: J. Geophys. Res. Space Phys. 94(A10), 13409 (1989)

    Article  ADS  Google Scholar 

  • Fried, B.D., Conte, S.D.: The Plasma Dispersion Function: the Hilbert Transform of the Gaussian. Elsevier, Amsterdam (1961)

    Google Scholar 

  • Gary, S.P.: J. Geophys. Res. Space Phys. 97(A6), 8519 (1992)

    Article  ADS  Google Scholar 

  • Gary, S.P., Lee, M.A.: J. Geophys. Res. 99, 11 (1994)

    Article  Google Scholar 

  • Gary, S.P., McKean, M.E., Winske, D.: J. Geophys. Res. Space Phys. 98(A3), 3963 (1993)

    Article  ADS  Google Scholar 

  • Gary, S.P., Anderson, B.J., Denton, R.E., Fuselier, S.A., McKean, M.E.: Phys. Plasmas 1(5), 1676 (1994)

    Article  ADS  Google Scholar 

  • Gary, S.P., Jian, L.K., Broiles, T.W., Stevens, M.L., Podesta, J.J., Kasper, J.C.: J. Geophys. Res. Space Phys. 121(1), 30 (2016)

    Article  ADS  Google Scholar 

  • Hellinger, P., Trávníček, P., Kasper, J.C., Lazarus, A.J.: Geophys. Res. Lett. 33(9), L09101 (2006)

    Article  ADS  Google Scholar 

  • Hellinger, P., Trávníček, P.M., Štverák, Š., Matteini, L., Velli, M.: J. Geophys. Res. Space Phys. 118(4), 1351 (2013)

    Article  ADS  Google Scholar 

  • Kasper, J.C., Lazarus, A.J., Gary, S.P.: Geophys. Res. Lett. 29(17), 20 (2002)

    Article  ADS  Google Scholar 

  • Kasper, J., Lazarus, A., Gary, S., Szabo, A.: In: AIP Conference Proceedings, p. 538. IOP Publishing, Bristol (2003)

    Chapter  Google Scholar 

  • Kennel, C.F., Petschek, H.E.: J. Geophys. Res. 71(1), 1 (1966)

    Article  ADS  Google Scholar 

  • Kennel, C., Scarf, F.: J. Geophys. Res. 73(19), 6149 (1968)

    Article  ADS  Google Scholar 

  • Krall, N., Trivelpiece, A.: Principles of Plasma Physics. McGraw-Hill, New York (1973)

    Google Scholar 

  • Lazar, M., Schlickeiser, R., Shukla, P.: Phys. Plasmas 15(4), 042103 (2008)

    Article  ADS  Google Scholar 

  • Lazar, M., Poedts, S., Schlickeiser, R.: Astron. Astrophys. 534, 116 (2011)

    Article  ADS  Google Scholar 

  • Lazar, M., Poedts, S., Fichtner, H.: Astron. Astrophys. 582, 124 (2015)

    Article  ADS  Google Scholar 

  • Lepping, R., Acũna, M., Burlaga, L., Farrell, W., Slavin, J., Schatten, K., Mariani, F., Ness, N., Neubauer, F., Whang, Y., et al.: Space Sci. Rev. 71(1–4), 207 (1995)

    Article  ADS  Google Scholar 

  • Leubner, M.P., Schupfer, N.: J. Geophys. Res. Space Phys. 105(A12), 27387 (2000)

    Article  ADS  Google Scholar 

  • Leubner, M.P., Schupfer, N.: J. Geophys. Res. Space Phys. 106(A7), 12993 (2001)

    Article  ADS  Google Scholar 

  • Maksimovic, M., Pierrard, V., Riley, P.: Geophys. Res. Lett. 24(9), 1151 (1997)

    Article  ADS  Google Scholar 

  • Matteini, L., Landi, S., Hellinger, P., Pantellini, F., Maksimovic, M., Velli, M., Goldstein, B.E., Marsch, E.: Geophys. Res. Lett. 34(20), 20105 (2007)

    Article  ADS  Google Scholar 

  • Matteini, L., Hellinger, P., Goldstein, B.E., Landi, S., Velli, M., Neugebauer, M.: J. Geophys. Res. Space Phys. 118(6), 2771 (2013)

    Article  ADS  Google Scholar 

  • McKean, M., Winske, D., Gary, S.: J. Geophys. Res. Space Phys. 97(A12), 19421 (1992)

    Article  ADS  Google Scholar 

  • McKean, M., Winske, D., Gary, S.: J. Geophys. Res. Space Phys. 99(A6), 11141 (1994)

    Article  ADS  Google Scholar 

  • Michno, M., Lazar, M., Yoon, P., Schlickeiser, R.: Astrophys. J. 781(1), 49 (2014)

    Article  ADS  Google Scholar 

  • Ogilvie, K., Chornay, D., Fritzenreiter, R., Hunsaker, F., Keller, J., Lobell, J., Miller, G., Scudder, J., Sittler Jr., E., Torbert, R., et al.: Space Sci. Rev. 71, 55 (1995)

    Article  ADS  Google Scholar 

  • Shaaban, S.M., Lazar, M., Poedts, S., Elhanbaly, A.: Astrophys. J. 814(1), 34 (2015)

    Article  ADS  Google Scholar 

  • Shaaban, S.M., Lazar, M., Poedts, S., Elhanbaly, A.: Astrophys. Space Sci. 361(6), 1 (2016)

    Article  Google Scholar 

  • Štverák, Š., Trávníček, P., Maksimovic, M., Marsch, E., Fazakerley, A.N., Scime, E.E.: J. Geophys. Res. Space Phys. 113(A3), A03103 (2008)

    ADS  Google Scholar 

  • Summers, D., Thorne, R.M.: Phys. Fluids, B Plasma Phys. 3(8), 1835 (1991)

    Article  Google Scholar 

  • Vasyliunas, V.M.: J. Geophys. Res. 73(9), 2839 (1968)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the use of WIND SWE (Ogilvie et al. 1995) ion data, and WIND MFI (Lepping et al. 1995) magnetic field data from the SPDF CDAWeb service: http://cdaweb.gsfc.nasa.gov/. The authors acknowledge support from the Katholieke Universiteit Leuven. These results were obtained in the framework of the projects GOA/2015-014 (KU Leuven), G.0A23.16N (FWO-Vlaanderen), and C 90347 (ESA Prodex). The research leading to these results has also received funding from IAP P7/08 CHARM (Belspo). S.M. Shaaban would like to thank the Egyptian Ministry of Higher Education for supporting his research activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Shaaban.

Appendices

Appendix A: Distributions and dispersion functions

For a plasma of electrons and protons with bi-Maxwellian velocity distribution functions (VDFs)

$$ F_{\alpha,M} ( v_{\parallel},v_{\perp} ) =\frac{1}{\pi ^{3/2}u_{\alpha,\perp}^{2} u_{\alpha,\parallel}}\exp \biggl( -\frac{v _{\parallel}^{2}}{u_{\alpha,\parallel}^{2}}-\frac{v_{\perp }^{2}}{u _{\alpha,\perp}^{2}} \biggr) , $$
(5)

where thermal velocities \(u_{\alpha,\parallel, \perp}\) are defined by the components of the anisotropic temperature

$$\begin{aligned} &T_{\alpha,\parallel}^{M}=\frac{m}{k_{B}} \int d\textbf{v} v_{\parallel}^{2} F_{\alpha}(v_{\parallel}, v_{\perp})=\frac{m u_{\alpha,\parallel}^{2}}{2 k_{B}} \end{aligned}$$
(6)
$$\begin{aligned} &T_{\alpha,\perp}^{M}=\frac{m}{2 k_{B}} \int d\textbf{v} v_{\perp} ^{2} F_{\alpha}(v_{\parallel}, v_{\perp})=\frac{m u_{\alpha,\perp}^{2}}{2 k_{B}}, \end{aligned}$$
(7)

the plasma dispersion function in Eq. (1) takes the standard form (Fried and Conte 1961)

$$ Z_{\alpha,M} \bigl( \xi_{\alpha,M}^{\pm} \bigr) = \frac{1}{\pi^{1/2}} \int_{-\infty }^{\infty}\frac{\exp ( -x^{2} ) }{x-\xi_{\alpha,M}^{\pm}}dt,\quad \Im \bigl( \xi_{\alpha,M}^{\pm} \bigr) >0 $$
(8)

of argument \(\xi_{\alpha,M}^{\pm}= ( \omega\pm\varOmega_{ \alpha} ) / ( ku_{\alpha,\parallel,} ) \)

To include suprathermal population, the electrons can be described by a bi-Kappa VDF (Summers and Thorne 1991)

$$\begin{aligned} F_{e,\kappa} =& \frac{1}{\pi^{3/2}u_{e, \perp}^{2}u_{e, \parallel}} \frac{\varGamma ( \kappa_{e} +1 ) }{\varGamma ( \kappa_{e} -1/2 )} \\ &{}\times\biggl[ 1+\frac{v_{\parallel}^{2}}{\kappa_{e} u_{e, \parallel}^{2}}+\frac{v_{\perp}^{2}}{\kappa_{e} u_{e, \perp}^{2}} \biggr] ^{-\kappa_{e} -1} \end{aligned}$$
(9)

which is normalized to unity \(\int d^{3}vF_{e,\kappa}= 1\), and is written in terms of thermal velocities \(u_{e,\parallel, \perp}\) defined by the components of the effective temperature (for a power-index \(\kappa_{e} >3/2\))

$$ T_{e,\parallel}^{K}=\frac{2 \kappa_{e}}{2 \kappa_{e}-3}\frac{m_{e} u _{e ,\parallel}^{2} }{2 k_{B}}, \quad \quad T_{e,\perp}^{K}=\frac{2 \kappa_{e}}{2 \kappa_{e}-3}\frac{m_{e} u_{e , \perp}^{2}}{2 k_{B}}. $$
(10)

Suprathermals enhance the electron temperature, and implicitly the plasma beta parameter (Leubner and Schupfer 2000, 2001; Lazar et al. 2015)

$$ \begin{aligned} &T_{e,\parallel, \perp}^{K}=\frac{2 \kappa_{e}}{2 \kappa_{e}-3}T_{e,\parallel,\perp}^{M} > T_{e,\parallel,\perp}^{M}, \\ &\beta_{e,\parallel, \perp}^{K}=\frac{2 \kappa_{e}}{2 \kappa_{e}-3} \beta_{e,\parallel,\perp} > \beta_{e,\parallel,\perp}, \end{aligned} $$
(11)

and for the modified Kappa dispersion function (8) we use in Eq. (1) the form (Lazar et al. 2008)

$$\begin{aligned} Z_{e,\kappa} \bigl( \xi_{e,\kappa}^{\pm}\bigr) =& \frac{1}{\pi^{1/2}\kappa_{e}^{1/2}}\frac{\varGamma ( \kappa_{e} ) }{\varGamma ( \kappa_{e} -1/2 )} \\ &{}\times \int_{-\infty}^{\infty}\frac{ ( 1+x^{2}/\kappa_{e} ) ^{-\kappa_{e}}}{x-\xi_{e,\kappa}^{\pm}}dx,\ \Im \bigl(\xi_{e,\kappa}^{\pm} \bigr) >0, \end{aligned}$$
(12)

of argument \(\xi_{e,\kappa}^{\pm}= (\omega\pm\varOmega_{e})/(k u_{e,\parallel,})\).

Appendix B: Fitting parameters for Eq. (4)

Table 1 Fitting parameters for PFH thresholds in Figs. 7 and 9(b)
Table 2 Fitting parameters for EMIC thresholds in Figs. 8 and 9(a)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, S.M., Lazar, M., Poedts, S. et al. Shaping the solar wind temperature anisotropy by the interplay of electron and proton instabilities. Astrophys Space Sci 362, 13 (2017). https://doi.org/10.1007/s10509-016-2994-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2994-7

Keywords

Navigation