Skip to main content
Log in

Rotating and expanding Bianchi type-IX model in \(f(R,T)\) theory of gravity

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The spatially homogeneous shear-free, rotating and expanding Bianchi type-IX universe has been considered in the presence of perfect fluid in \(f(R,T)\) theory of gravity. The exact solution of the field equations has been obtained and the functional form of \(f(R,T)=R+2f(T)\) gravity has been reconstructed. The existence of such a solution suggests that the general relativistic shear-free perfect fluid conjecture which claims that a shear-free perfect fluid cannot rotate and expand at the same time, is not valid in this modified theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Acknowledgements

I would like to thank the anonymous referee for fruitful suggestions. The author is supported by Istanbul University Scientific Research Projects (BAP) under project number 52210.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Değer Sofuoğlu.

Appendices

Appendix A: Evolution and constraint equations of \(f(R,T)\) gravity

1.1 A.1 Evolution equations

$$\begin{aligned} &{ \begin{aligned}[b] e_{0}\theta - e_{\alpha} \dot{u}^{\alpha} &= - \frac{1}{3}\theta^{2} + (\dot{u}_{\alpha} - 2a_{\alpha} )\dot{u}^{\alpha} - 2\sigma^{2} + 2 \omega^{2} \\ &\quad {}- \frac{1}{2}\bigl(\mu^{t} + 3p^{t}\bigr), \end{aligned}} \end{aligned}$$
(38)
$$\begin{aligned} &{ \begin{aligned}[b] e_{0}\omega^{\alpha} - \frac{1}{2} \varepsilon^{\alpha \beta \gamma} e_{\beta} \dot{u}_{\gamma} &= \varepsilon^{\alpha \beta \gamma} \biggl(\varOmega_{\beta} \omega_{\gamma} - \frac{1}{2}a_{\beta} \dot{u}_{\gamma} \biggr) - \frac{1}{2}n^{\alpha}_{\beta} \dot{u}^{\beta} \\ &\quad {}- \frac{2}{3}\theta \omega^{\alpha} + \sigma^{\alpha}_{\beta} \omega^{\beta}, \end{aligned}} \end{aligned}$$
(39)
$$\begin{aligned} &{ \begin{aligned}[b] &e_{0}\sigma_{\alpha \beta} - e_{ \langle \alpha}\dot{u}_{\beta \rangle} \\ &\quad {}= \varepsilon_{\gamma \delta \langle \alpha }\bigl(2 \varOmega^{\gamma} {\sigma_{\beta \rangle}}^{\delta} - {n_{\beta \rangle}}^{\gamma} \dot{u}^{\delta} \bigr) + a_{ \langle \alpha } \dot{u}_{\beta \rangle} + \dot{u}_{ \langle \alpha }\dot{u}_{\beta \rangle} \\ &\qquad {}- \frac{2}{3}\theta \sigma_{\alpha \beta} - \sigma_{\gamma \langle \alpha }{\sigma_{\beta \rangle}}^{\gamma} - \omega_{ \langle \alpha } \omega_{\beta \rangle} \\ &\qquad {}- \biggl(E_{\alpha \beta} - \frac{1}{2} \pi_{\alpha \beta}^{t}\biggr), \end{aligned}} \end{aligned}$$
(40)
$$\begin{aligned} &{e_{0}\biggl(E_{\alpha \beta} + \frac{1}{2}\pi_{\alpha\beta}^{t}\biggr) - \varepsilon^{\gamma \delta}{}_{\langle \alpha}e_{\vert \gamma \vert }H_{\beta \rangle \delta} + \frac{1}{2}e_{\langle \alpha}q_{\beta\rangle}^{t}} \\ &{\quad {}= - 3n_{\gamma\langle \alpha }{H_{\beta \rangle}}^{\gamma} + \frac{1}{2}n^{\gamma}{}_{\gamma} H_{\alpha\beta} -\frac{1}{2}(a_{ \langle \alpha } + 2\dot{u}_{ \langle\alpha })q_{\beta \rangle}^{t}} \\ &{\qquad {} - \frac{1}{2}\bigl(\mu^{t} + p^{t}\bigr) \sigma_{\alpha \beta} - \theta \biggl(E_{\alpha \beta} + \frac{1}{6} \pi_{\alpha \beta}^{t}\biggr)} \\ &{\qquad {} + 3\sigma^{\gamma}{}_{ \langle \alpha} \biggl(E_{\beta \rangle \gamma} - \frac{1}{6}\pi_{\beta \rangle \gamma}^{t} \biggr)} \\ &{\qquad {}+ \varepsilon^{\gamma \delta}{}_{ \langle \alpha}\biggl[(2 \varOmega_{\gamma} + \omega_{\gamma} ) \biggl(E_{\beta \rangle \delta}+ \frac{1}{2}\pi_{\beta \rangle \delta}^{t}\biggr)} \\ &{\qquad {} + \frac{1}{2}n_{\beta \rangle \gamma} q^{t}_{\delta} + (2\dot{u}_{\gamma} - a_{\gamma} )H_{\beta \rangle \delta} \biggr],} \end{aligned}$$
(41)
$$\begin{aligned} &{ \begin{aligned}[b] &e_{0}H_{\alpha \beta} + {\varepsilon^{\gamma \delta}}_{ \langle \alpha }e_{\vert \gamma \vert }\biggl(E_{ \beta \rangle \delta} - \frac{1}{2}\pi_{\beta \rangle \delta}^{t}\biggr)\\ &\quad {}= {3n^{\gamma}}_{ \langle \alpha } \biggl(E_{\beta \rangle \gamma} - \frac{1}{2}\pi_{\beta \rangle \gamma}^{t} \biggr)- \frac{1}{2}{n^{\gamma}}_{\gamma} \biggl(E_{\alpha \beta} - \frac{1}{2}\pi_{\alpha \beta}^{t} \biggr) \\ &\qquad {} - \theta H_{\alpha \beta} + {3\sigma^{\gamma}}_{ \langle \alpha }H_{\beta \rangle \gamma} + \frac{3}{2}\omega_{ \langle \alpha }q_{\beta \rangle}^{t} \\ &\qquad {}+ {\varepsilon^{\gamma \delta}}_{ \langle \alpha}\biggl[(2 \varOmega_{\gamma} + \omega_{\gamma} )H_{\beta \rangle \delta} + a_{\gamma} \biggl(E_{\beta \rangle \delta} - \frac{1}{2}\pi_{\beta \rangle \delta}^{t} \biggr) \\ &\qquad {}+ \frac{1}{2}\sigma_{\beta \rangle \gamma} q_{\delta}^{t} - 2\dot{u}_{\gamma} E_{\beta \rangle \delta} \biggr], \end{aligned}} \end{aligned}$$
(42)
$$\begin{aligned} &{e_{0}\mu^{t} + \delta^{\alpha \beta} e_{\beta} q_{\alpha}^{t} + \bigl(\mu^{t} + p^{t}\bigr)\theta + \sigma^{\alpha \beta} \pi_{\alpha \beta}^{t}} \\ &{\quad {}+ 2(\dot{u}_{\alpha} - a_{\alpha} )q_{\alpha}^{t} = 0,} \end{aligned}$$
(43)
$$\begin{aligned} &{ \begin{aligned}[b] &e_{0}q_{\alpha}^{t} + e_{\alpha} p^{t} + \delta^{\beta \gamma} e_{\gamma} \pi_{\alpha \beta}^{t} + \bigl(\mu^{t} + p^{t} \bigr)\dot{u}_{\alpha} + \frac{4}{3}\theta q_{\alpha}^{t} \\ &\quad {}+ \sigma^{\alpha \beta} q_{\beta}^{t} + \bigl(\dot{u}^{\beta} - 3a^{\beta} \bigr) \pi_{\alpha \beta}^{t} \\ &\quad {}- {\varepsilon_{\alpha}}^{\beta \gamma} \bigl[(\varOmega_{\beta} - \omega_{\beta} )q_{\gamma}^{t} + n_{\beta}^{\delta} \pi_{\delta \gamma}^{t}\bigr] = 0, \end{aligned}} \end{aligned}$$
(44)
$$\begin{aligned} &{ \begin{aligned}[b] &e_{0}a_{\alpha} + \frac{1}{2}{\varepsilon_{\alpha \beta}}^{\gamma} (e_{\gamma} + \dot{u}_{\gamma} - 2a_{\gamma} )\varOmega^{\beta} + \frac{1}{2}\varepsilon_{\alpha \beta \gamma} \bigl(\dot{u}^{\beta} + a^{\beta} \bigr)\omega^{\gamma} \\ &\quad {}- \frac{1}{2}{\sigma_{\alpha}}^{\beta} ( \dot{u}_{\beta} + a_{\beta} ) + \frac{1}{3}( \dot{u}_{\alpha} + a_{\alpha} )\theta - \frac{1}{2}n_{\alpha \beta} \omega^{\beta}\\ &\quad {} + \frac{1}{2}\varepsilon_{\alpha \beta \lambda} {\sigma^{\beta}}_{\gamma} n^{\gamma \lambda} = 0, \end{aligned}} \end{aligned}$$
(45)
$$\begin{aligned} &{ \begin{aligned}[b] &e_{0}n^{\alpha \beta} + \frac{1}{3}n^{\alpha \beta} \theta + \delta^{\alpha \beta} \bigl[(e_{\gamma} + \dot{u}_{\gamma} ) \bigl(\varOmega^{\gamma} + \omega^{\gamma} \bigr)\bigr] \\ &\quad {}- \delta^{\gamma ( \beta }\bigl[(e_{\gamma} + \dot{u}_{\gamma} ) \bigl(\varOmega^{\alpha )} + \omega^{\alpha )} \bigr)\bigr] + \varepsilon^{\gamma \delta ( \alpha }(e_{\gamma} + \dot{u}_{\gamma} ){\sigma^{\beta )}}_{\delta} \\ &\quad {}- {2\sigma^{ ( \alpha }}_{\gamma} n^{\beta )\gamma} + 2\varepsilon^{\gamma \lambda ( \alpha }{n^{\beta )}}_{\gamma} ( \varOmega_{\lambda} + \omega_{\lambda} ) = 0. \end{aligned}} \end{aligned}$$
(46)

1.2 A.2 Constraint equations

$$\begin{aligned} &{ \begin{aligned}[b] &e_{\beta} {\sigma_{\alpha}}^{\beta} - \frac{2}{3}e_{\alpha} \theta + {\varepsilon_{\alpha}}^{\beta \gamma} e_{\beta} \omega_{\gamma} - 3a_{\beta} {\sigma_{\alpha}}^{\beta} - n_{\alpha \beta} \omega^{\beta} \\ &\quad {}- {\varepsilon_{\alpha}}^{\beta \gamma} \bigl[n_{\beta \delta} {\sigma^{\delta}}_{\gamma} + (a_{\beta} - 2\dot{u}_{\beta} )\omega_{\gamma} \bigr] + q_{\alpha}^{t} = 0, \end{aligned}} \end{aligned}$$
(47)
$$\begin{aligned} &{e_{\alpha} \omega^{\alpha} - ( 2a_{\alpha} + \dot{u}_{\alpha} )\omega^{\alpha} = 0,} \end{aligned}$$
(48)
$$\begin{aligned} &{ \begin{aligned}[b] &H_{\alpha \beta} + e_{ \langle \alpha } \omega_{ \beta \rangle} - {\varepsilon^{\gamma \delta}}_{ \langle \alpha }e_{\vert \gamma \vert } \sigma_{ \beta \rangle \delta} + (2\dot{u}_{ \langle \alpha } + a_{ \langle \alpha }) \omega_{ \beta \rangle} \\ &\quad {}+ 3n_{\gamma \langle \alpha }{\sigma_{ \beta \rangle}}^{\gamma} - \frac{1}{2}{n^{\gamma}}_{\gamma} \sigma_{\alpha \beta} \\ &\quad {} - {\varepsilon^{\gamma \delta}}_{ \langle \alpha }(n_{ \beta \rangle \gamma} \omega_{\delta} - a_{\gamma} \sigma_{ \beta \rangle \delta} )= 0, \end{aligned}} \end{aligned}$$
(49)
$$\begin{aligned} &{\delta^{\beta \gamma} e_{\gamma} \biggl(E_{\alpha \beta} + \frac{1}{2}\pi_{\alpha \beta}^{t} \biggr) - \frac{1}{3}e_{\alpha} \mu^{t} - 3a^{\beta} \biggl(E_{\alpha \beta} + \frac{1}{2} \pi_{\alpha \beta}^{t}\biggr)} \\ &{\quad {} + \frac{1}{3}\theta q_{\alpha}^{t} - \frac{1}{2}\sigma_{\alpha}^{\beta} q_{\beta}^{t}- 3\omega^{\beta} H_{\alpha \beta}- {\varepsilon_{\alpha}}^{\beta \gamma} \biggl[\sigma_{\beta}^{\delta} H_{\delta \gamma} - \frac{3}{2} \omega_{\beta} q_{\gamma}^{t}} \\ &{\quad {} + {n_{\beta}}^{\delta} \biggl(E_{\delta \gamma} + \frac{1}{2}\pi_{\delta \gamma}^{t} \biggr)\biggr] = 0,} \end{aligned}$$
(50)
$$\begin{aligned} &{ \begin{aligned}[b] &\delta^{\beta \gamma} e_{\gamma} H_{\alpha \beta} + \frac{1}{2}{\varepsilon_{\alpha}}^{\beta \gamma} e_{\beta} q_{\gamma}^{t} - 3a_{\beta} {H_{\alpha}}^{\beta} + \bigl(\mu^{t} + p^{t} \bigr)\omega_{\alpha} \\ &\quad {}- \frac{1}{2}{n_{\alpha}}^{\beta} q_{\beta}^{t} + 3\omega^{\beta} \biggl(E_{\alpha \beta} - \frac{1}{6} \pi_{\alpha \beta}^{t}\biggr) \\ &\quad {}+ {\varepsilon_{\alpha}}^{\beta \gamma} \biggl[{\sigma_{\beta}}^{\delta} \biggl(E_{\delta \gamma} + \frac{1}{2}\pi_{\delta \gamma}^{t}\biggr) - \frac{1}{2}a_{\beta} q_{\gamma}^{t} - {n_{\beta}}^{\delta} H_{\delta \gamma} \biggr] = 0, \end{aligned}} \\ \end{aligned}$$
(51)
$$\begin{aligned} &{ \begin{aligned}[b] &e_{\beta} n^{\alpha \beta} + \varepsilon^{\alpha \beta \gamma} e_{\beta} a_{\gamma} - 2\varepsilon^{\alpha}{}_{\beta\gamma} \omega^{\beta} \varOmega^{\gamma} + 2\sigma^{\alpha}{}_{\beta} \omega^{\beta} \\ &\quad {}+ \frac{2}{3}\theta \omega^{\alpha} - 2n^{\alpha \beta} a_{\beta} = 0, \end{aligned}} \end{aligned}$$
(52)
$$\begin{aligned} &{ \begin{aligned}[b] &e_{ \langle \alpha }a_{ \beta \rangle} + b_{ \langle \alpha \beta \rangle} + (e_{\gamma} - 2a_{\gamma} ){n^{\lambda}}_{ \langle \alpha } {\varepsilon^{\gamma}}_{ \beta \rangle \lambda} \\ &\quad {}+ \frac{1}{3}\theta \sigma_{\alpha \beta} - {\sigma^{\gamma}}_{ \langle \alpha }\sigma_{ \beta \rangle \gamma} + 2\omega_{ \langle \alpha } \varOmega_{ \beta \rangle} - \omega_{ \langle \alpha }\omega_{ \beta \rangle} \\ &\quad {}- \biggl(E_{\alpha \beta} + \frac{1}{2}\pi_{\alpha \beta}^{t} \biggr) = 0, \end{aligned}} \end{aligned}$$
(53)
$$\begin{aligned} &{ \begin{aligned}[b] &4e_{\alpha} a^{\alpha} - 6a_{\alpha} a^{\alpha} - n^{\alpha \gamma} n_{\alpha \gamma} + \frac{1}{2}{n^{\gamma}}_{\gamma} {n^{\alpha}}_{\alpha} - 4\omega^{\lambda} \varOmega_{\lambda} - 2\mu^{t}\\ &\quad {} + \frac{2}{3}\theta^{2} + 2 \sigma^{2} + 2\omega^{2} = 0, \end{aligned}} \end{aligned}$$
(54)

where \(E_{ab}\) and \(H_{ab}\) are the electric (\(E_{ab} = C_{aebd}u^{e}u^{d}\)) and the magnetic (\(H_{ab} = (1/2){\varepsilon_{a}}^{cd}C_{cdbe}u^{e}\)) parts of the conformal Weyl curvature tensor \(C_{abcd}\).

Appendix B: Dynamic quantities of the rotating Bianchi type-IX model

$$\begin{aligned} &{ \begin{aligned}[b] \mu^{t} &= - \frac{v_{1}^{2}}{k_{1}^{2}}\biggl(2\frac{\ddot{a}}{a} + \frac{\dot{a}^{2}}{a^{2}}\biggr) + 3\frac{\dot{a}^{2}}{a^{2}} - \frac{1}{4}\biggl[ \frac{k_{1}^{2} - 3v_{1}^{2}}{k_{2}^{2}k_{3}^{2}}+ \frac{k_{2}^{2}}{k_{1}^{2}k_{3}^{2}}\\ &\quad {} + \frac{k_{3}^{2}}{k_{1}^{2}k_{2}^{2}} - \frac{2}{k_{1}^{2}} - \frac{2}{k_{2}^{2}} - \frac{2}{k_{3}^{2}})\biggr]\frac{1}{a^{2}}, \end{aligned}} \end{aligned}$$
(55)
$$\begin{aligned} &{ \begin{aligned}[b] p^{t} &= \frac{1}{3}\frac{v_{1}^{2}}{k_{1}^{2}}\biggl(4 \frac{\ddot{a}}{a} + 5\frac{\dot{a}^{2}}{a^{2}}\biggr) - 2\frac{\ddot{a}}{a} - \frac{\dot{a}^{2}}{a^{2}} + \frac{1}{12}\biggl[\frac{k_{1}^{2} + v_{1}^{2}}{k_{2}^{2}k_{3}^{2}} + \frac{k_{2}^{2}}{k_{1}^{2}k_{3}^{2}} \\ &\quad {}+ \frac{k_{3}^{2}}{k_{1}^{2}k_{2}^{2}} - \frac{2}{k_{1}^{2}} - \frac{2}{k_{2}^{2}} - \frac{2}{k_{3}^{2}})\biggr]\frac{1}{a^{2}}, \end{aligned}} \end{aligned}$$
(56)
$$\begin{aligned} &{q_{1}^{t} = 2\frac{v_{1}}{k_{1}}\biggl( \frac{\ddot{a}}{a} - \frac{\dot{a}^{2}}{a^{2}}\biggr) - \frac{k_{1}v_{1}}{2k_{2}^{2}k_{3}^{2}} \frac{1}{a^{2}},} \end{aligned}$$
(57)
$$\begin{aligned} &{ \begin{aligned}[b] \pi_{11}^{t} &= - \frac{4}{3} \frac{v_{1}^{2}}{k_{1}^{2}}\biggl(\frac{\ddot{a}}{a} - \frac{\dot{a}^{2}}{a^{2}}\biggr) + \frac{1}{3}\biggl(\frac{2k_{1}^{2} - v_{1}^{2}}{k_{2}^{2}k_{3}^{2}} - \frac{k_{2}^{2}}{k_{3}^{2}k_{1}^{2}} -\frac{k_{3}^{2}}{k_{1}^{2}k_{2}^{2}}\\ &\quad {} + \frac{2}{k_{1}^{2}} - \frac{1}{k_{2}^{2}} - \frac{1}{k_{3}^{2}} \biggr)\frac{1}{a^{2}}, \end{aligned}} \end{aligned}$$
(58)
$$\begin{aligned} &{ \begin{aligned}[b] \pi_{22}^{t} &= \frac{2}{3} \frac{v_{1}^{2}}{k_{1}^{2}}\biggl(\frac{\ddot{a}}{a} - \frac{\dot{a}^{2}}{a^{2}}\biggr) + \frac{1}{3}\biggl(\frac{2k_{2}^{2}}{k_{3}^{2}k_{1}^{2}} - \frac{k_{3}^{2}}{k_{1}^{2}k_{2}^{2}} - \frac{2k_{1}^{2} - v_{1}^{2}}{2k_{2}^{2}k_{3}^{2}} \\ &\quad {}+ \frac{2}{k_{2}^{2}} - \frac{1}{k_{3}^{2}} - \frac{1}{k_{1}^{2}} \biggr)\frac{1}{a^{2}}, \end{aligned}} \end{aligned}$$
(59)
$$\begin{aligned} &{ \begin{aligned}[b] \pi_{33}^{t} &= \frac{2}{3} \frac{v_{1}^{2}}{k_{1}^{2}}\biggl(\frac{\ddot{a}}{a} - \frac{\dot{a}^{2}}{a^{2}}\biggr) + \frac{1}{3}\biggl(\frac{2k_{3}^{2}}{k_{1}^{2}k_{2}^{2}} - \frac{2k_{1}^{2} - v_{1}^{2}}{2k_{2}^{2}k_{3}^{2}} - \frac{k_{2}^{2}}{k_{3}^{2}k_{1}^{2}}\\ &\quad {} + \frac{2}{k_{3}^{2}} - \frac{1}{k_{1}^{2}} - \frac{1}{k_{2}^{2}} \biggr)\frac{1}{a^{2}}, \end{aligned}} \end{aligned}$$
(60)
$$\begin{aligned} &{\pi_{23}^{t} = \frac{v_{1}(k_{2}^{2} - k_{3}^{2})}{k_{2}k_{3}k_{1}^{2}} \frac{\dot{a}}{a^{2}}.} \end{aligned}$$
(61)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofuoğlu, D. Rotating and expanding Bianchi type-IX model in \(f(R,T)\) theory of gravity. Astrophys Space Sci 361, 12 (2016). https://doi.org/10.1007/s10509-015-2593-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-015-2593-z

Keywords

Navigation