Skip to main content

Advertisement

Log in

Inhibitory activity of probiotic Enterococcus faecium MC13 against Aeromonas hydrophila confers protection against hemorrhagic septicemia in common carp Cyprinus carpio

  • Original Research
  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The present study involved the control of Aeromonas hydrophila in Cyprinus carpio by bacteria Enterococcus faecium MC13 isolated from fish Mugil cephalus intestine. Antagonistic effects were confirmed against Aeromonas hydrophila by cross-streaking and the agar spot method. Probiotic effects of the isolate were confirmed by injection and oral administration to check for nonpathogenicity to fish. All the two probiotics were orally administered to fingerlings of Cyprinus carpio for 60 days through feed. The intestinal load of bacteria and NBT assay were analyzed on 7, 15, 30, and 60th day of treatment. Experimental fish were challenged with Aeromonas hydrophila on 30 and 60th day. The neutrophil activity was higher in E. faecium MC13 fed fish on day 60 (1.525 ± 0.379 OD). In respect of relative percentage survival (RPS), the higher protection of 75 and 77.8% was observed in E. faecium MC13 fed fish on 30 and 60th day of challenge with Aeromonas hydrophila This study identified the bacterial probiont MC13 (Enterococcus faecium) effectively controlled the Aeromonas hydrophila infection in Cyprinus carpio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abee T, Klaenhammer TR, Letellier L (1994) Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl Environ Microbiol 60:1006–1013

    PubMed  CAS  Google Scholar 

  • Aly SM, Ahmed YA, Ghareeb AA, Mohamed MF (2008) Studies on Bacillus subtilis and Lactobacillus acidophilus as potential probiotics, on the immune response and resistance of Tilapia niloticus (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol 25:128–136

    PubMed  CAS  Google Scholar 

  • Amend DF (1981) Potency testing of fish vaccines. Dev Bio Standard 49:447–454

    Google Scholar 

  • Arthur M, Reynolds P, Courvalin P (1996) Glycopeptide resistance in Enterococci. Trends Microbiol 4:401–407

    PubMed  CAS  Google Scholar 

  • Arunachalam K, Gill HS, Chandra RK (2000) Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019). Eur J Clin Nutr 54:263–267

    PubMed  CAS  Google Scholar 

  • Austin B, Stuckey LF, Robertson PAW, Effendi I, Griffith DRW (1995) A probiotic strain of Vibrio alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordalii. J Fish Dis 18:93–96

    Google Scholar 

  • Babu V (2004) Studies on physical, chemical and microbiological characterization of shrimp pond water and sediments treated with commercial microbial products. M. Phil thesis, Bharathidasan University, India

  • Balcazar JL, de Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrill D, Müzqüiz JL (2006) The role of probiotics in aquaculture. Vet Microbiol 114:173–186

    PubMed  Google Scholar 

  • Barker G (1998) Novel alternatives to old chemotherapeutants. Fish Farmer November/December: 16–17

  • Beatriz GG, Erwin G, Edmund RS, Arnold JM, Juan ES, Wil NK (1996) Bactericidal mode of action of Plantaricin C. Appl Environ Microbiol 62:2701–2709

    Google Scholar 

  • Brunt JB, Austin B (2005) Use of a probiotic to control lactococcosis and streptococcosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 28:693–701

    PubMed  CAS  Google Scholar 

  • Cahill MM (1990) Bacterial flora of fishes: a review. Microbial Ecol 19:21–41

    Google Scholar 

  • Chabot DJ, Thune RJ (1991) Proteases of Aeromonas hydrophila complex: identification, characterization and relation to virulence in channel cat fish Ictalurus punctatus (Ralinnesque). J Fish Dis 14:171–183

    CAS  Google Scholar 

  • Chilaka S (2001) Development of PCR based diagnostic kit and outer membrane protein (OMP) vaccine against Aeromonas hydrophila in Cyprinus carpio. M.Sc thesis Pondicherry University, Pondicherry, India

  • Cohen PS, Laux DC (1995) Bacterial adhesion to and penetration of intestinal mucus in vitro. Methods Enzymol 253:309–314

    PubMed  CAS  Google Scholar 

  • Davis JF, Hayasaka SS (1998) Pathogenic bacteria associated with cultured American eels Anguilla rostrata le sueur. J Fish Biol 23:557–564

    Google Scholar 

  • Gatesoupe FJ (1999) The use of probiotics in aquaculture. Aquaculture 180:147–165

    Google Scholar 

  • Gibson LF, Woodworth J, George AM (1998) Probiotic activity Aeromonas media when challenged with Vibrio tubiasbii. Aquaculture 191:111–120

    Google Scholar 

  • Gomez-Gil B, Roque A, Turnbull JF (2000) The use and selection of probiotic bacteria in the culture of larval aquatic organism. Aquaculture 191:259–270

    Google Scholar 

  • Gopalakannan A, Arul V (2006) Immunomodulatory effects of dietary intake of chitin, Chitosan, levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture 255:179–187

    CAS  Google Scholar 

  • Gratia A (1946) Techniques selectiveness pour la recherché systematique des germs antibitiques. C.R. Seances Society Biol Paris 140:433–436

    Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Stayley JT, Williams ST (eds) (1993) Bergey’s manual of determinative bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Inamura H, Muruga K, Nakai T (1984) Toxicity of extracellular products of Vibrio anguillarum. J Fish Pathol 19:89–96

    Google Scholar 

  • Irianto A, Austin B (2002) Probiotics in aquaculture. J Fish Dis 25:633–642

    Google Scholar 

  • Irianto A, Austin B (2003) Use of dead probiotic cells to control furunculosis in rainbow trout Oncorhynchus mykiss (Walbaum). J Fish Dis 26:59–62

    Google Scholar 

  • Jöborn A (1998) The role of the gastrointestinal microbiota in the prevention of bacterial infection in fish. PhD thesis, Goteberg University, Sweden

  • Jöborn A, Olsson JC, Westerdahl A, Conway PL, Kjellberg S (1997) Colonisation in the fish intestinal tract and production of inhibitory substances in intestinal mucus and faecal extract by Carnobacterium sp. strain. J Fish Dis 20:383–392

    Google Scholar 

  • Joseph SW, Carnahan A (1994) The isolation, identification and systematic of the motile Aeromonas species. Annu Rev Fish Dis 4:315–343

    Google Scholar 

  • Kekessy DA, Piquet OD (1970) New method for detecting bacteriocin production. J Appl Microbiol 20(2):282–283

    CAS  Google Scholar 

  • Khan MS (2002) Isolation and characterization of probiotic bacteria from fish intestine. MSc thesis, Pondicherry University, Pondicherry, India

  • Kirjavainen PV, Ouwehand AC, Isolauri E, Salminen SJ (1998) The ability of probiotic bacteria to bind to human intestinal mucus. J Appl Microbiol 85:769–777

    Google Scholar 

  • Kumar R, Mukherjee SC, Pani Prasad K, Pal AK (2006) Evalution of Bacillus subtilis as a probiotic to Indian Major carp Labeo rohita. Aquaculture Res 37:125–1221

    Google Scholar 

  • Moriarty DJ (1998) Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture 164:351–358

    Google Scholar 

  • Nes IF, Holo H (2000) Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55:50–61

    PubMed  CAS  Google Scholar 

  • Newaj-Fyzul A, Adesiyun AA,Mutani A, Ramsubhag A, Brunbt J, Austin B (2007) Bacillus subtilis AB! controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss,Walbaum,) J Appl Microbiol 103(5): 1699–1706

    Google Scholar 

  • Nikoskelainen S, Ouwehand A, Salminen S, Bylund G (2001) Production of rainbow trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus. Aquaculture 198:229–236

    Google Scholar 

  • Nikoskelainen S, Ouwehand AC, Bylund G, Salminen S, Lilius EM (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol 15:443–452

    PubMed  CAS  Google Scholar 

  • Olsson JC, Westerdahl A, Conway PL, Kjelleberg S (1992) Intestinal colonization potential of turbot (Scophthalmus maximus) and dab Limanda limanda—associated bacteria with inhibitory effects against Vibrio anguillarum. Appl Environ Microbiol 58:551–556

    PubMed  CAS  Google Scholar 

  • Ouwehand AC, Niemi P, Salminen SJ (1999) The normal faecal microflora does not affect the adhesion of probiotic bacteria in vitro. FEMS Microbiol Lett 177:35–38

    PubMed  CAS  Google Scholar 

  • Panigrahi A, Kiron V, Puangkaew J, Kobayashi T, Satoh S, Sugita H (2004) Immune responses in Rainbow trout Oncorhyncus mykiss induced by a potential probiotic bacteria Lactobacillus rhamnosus JCM 1136. Vet Immunol Immunopathol 102:379–388

    PubMed  CAS  Google Scholar 

  • Panigrahi A, Kiron V, Puangkaew J, Kobayashi T, Satoh S, Sugita H (2005) The viability of probiotic bacteria as a factor influencing the immune response in rainbow trout Oncorhynchus mykiss. Aquaculture 243:241–254

    Google Scholar 

  • Pelto L, Isolauri E, Lilius EM, Nuutila J, Salminen S (1998) Probiotic bacteria down- regulate the milk-induced inflammatory response in milk-hypersensitive subjects but have an immunostimulatory effect in healthy subjects. Clin Exp Allergy 28:1474–1479

    PubMed  CAS  Google Scholar 

  • Raida MK, Larsen JL, Nielsen ME, Buchmann K (2003) Enhanced resistance of rainbow trout, Oncorhynchus mykiss (Walbaum), against Yersinia ruckeri challenge following oral administration of Bacillus subtilis and B. licheniformis (BioPlus2B). J Fish Dis 26:495–498

    PubMed  CAS  Google Scholar 

  • Rengpipat S, Phianpak W, Piyatiratitivorakul S, Menasveta P (1998) Effect of probiotic bacterium on black tigher shrimp Penaeus monodon survival and growth. Aquaculture 167:301–313

    Google Scholar 

  • Rhodehamel EJ, Harmon SM (1998) Bacillus cereus. Ch. 14. In: Merker RL (ed) Food and drug administration bacteriological analytical manual, 8th edn (revision A), CD-ROM version. AOAC International, Gaithersburg, MD

  • Ringo E, Jutfelt F, Kamapattipillai P, Bakken Y, Sundell K, Glette J, Mayhew JM, Myklebust R, Olsen RE (2004) Damaging effect of the fish pathogen Aeromonas salmonicida ssp. Salmonicida on intestinal enterocytes of Atlantic salmon (Salmo salar L.). Cell Tissue Res 318:305–311

    PubMed  Google Scholar 

  • Ringo E, Schillinger U, Holzapfel W (2005) Antimicrobial activity of lactic acid bacteria isolated from aquatic animals and use of lactic acid bacteria in aquaculture. In: Holzapfel W, Naughton P (eds) Microbial ecology in growing animals. Elsevier, Edinburgh, pp 418–453

  • Ringo E, Salinas L, Olsen RE, Nyhang A, Myklebust R, Mayhew TM (2007) Histological changes in intestine of Atlantic salmon (Salmo salar L.) following in vitro exposure to pathogens and probiotic bacterial strains. Cell Tissue Res 328:108–116

    Google Scholar 

  • Robertson PAW, O’Dowd C, Burrells C, Williams P, Austin B (2000) Use of Carnobacterium sp. as a probiotic for Atlantic salmon (Salmo salar L.) and rainbow trout (Oncorhynchus mykiss, Walbaum). Aquaculture 185:235–243

    Google Scholar 

  • Satish KR, Arul V (2009) Purification and characterisation of Phocaecin PI80: an antilisterial bacteriocin produced by Streptococcus phocae PI80 isolated from the gut of Penaeus indicus (Indian white shrimp) J Microbiol Biotechnol 19(11): 1393–1400

    Google Scholar 

  • Schiffrin EJ, Brassart D, Servin AL, Rochat F, Donnet-Hughes A (1997) Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. FEMS Microbiol Lett 153:455–463

    Google Scholar 

  • Shome R, Shome BR (1999) A typical chronic form of Aeromonas hydrophila infection in Indian major crab, Catla catla, from Andaman current. Science 76:1188–1190

    Google Scholar 

  • Stasiak SA, Baumann PC (1996) Neutrophil activity as a potential bioindicator for contaminated analysis. Fish Shellfish Immunol 6:537–539

    Google Scholar 

  • Sugita H, Nakumara T, Tanaka K, Deguchi Y (1998) Production of the antibacterial substance by Bacillus sp. strain NM12, an intestinal bacterium of Japanese coastal fish. Aquaculture 165:269–280

    CAS  Google Scholar 

  • Swain SM, Singh C, Arul V (2009) Inhibitory activity of probiotics Streptococcus phocae PI80 and Enterococcus faecium MC13 against vibriosis in shrimp Penaeus monodon. World J Microbiol Biotechnol 25:697–703

    Google Scholar 

  • Taoka Y, Maeda H, Jo JY, Jeon MJ, Bai SC, Lee WJ, Yuge K, Koshio S (2006) Growth, stress tolerance and non-specific immune response of Japanese Flounder Paralichthys olivaceus in a closed recirculation system. J Fish Sci 72:310–321

    CAS  Google Scholar 

  • van der Waaij D, Nord CE (2000) Development and persistence of multi-resistance to antibiotics in bacteria; an analysis and a new approach to this urgent problem. Int J Antimicrob Agents 16:191–197

    PubMed  Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agent in aquaculture. Microbiol Mol Biol Rev 4:655–671

    Google Scholar 

  • Villamil L, Figueras A, Novoa B (2003) Immunomodulatory effects of nisin in turbot (Scopthalmus maximus L.). Fish Shellfish Immunol 14:157–169

    PubMed  CAS  Google Scholar 

  • Vine NH, Leukes WD, Kaiser H (2004) In vitro growth characteristics of five candidate aquaculture probiotics and two fish pathogens grown in fish intestinal mucus. FEMS Micribiol Lett 231:145–152

    CAS  Google Scholar 

  • Wang YB, Tim ZQ, Yao JT, Li WF (2008) Effects of probiotics Enterococcus faecium on tilapia (Oreochromis niloticus) growth performance and immune response. Aquaculture 277:203–207

    Google Scholar 

  • Watson AK, Kespar H, Lategan MJ, Gibson L (2008) Probiotics in aquaculture: the need principles and mechanism of action and screening processes. Aquaculture 274:1–14

    Google Scholar 

  • Weisberg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Google Scholar 

  • Yadav M, Indira G, Ansary A (1992) Cytotoxin elaboration by Aeromonas hydrophila isolated from fish with epizootic Aeromonas isolated from fish epizootic ulcerative syndrome. J Fish Dis 159:183–189

    Google Scholar 

  • Zar JH (1984) Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, NJ

Download references

Acknowledgments

The financial support received from the University Grants Commission, New Delhi, India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatesan Arul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopalakannan, A., Arul, V. Inhibitory activity of probiotic Enterococcus faecium MC13 against Aeromonas hydrophila confers protection against hemorrhagic septicemia in common carp Cyprinus carpio . Aquacult Int 19, 973–985 (2011). https://doi.org/10.1007/s10499-011-9415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-011-9415-2

Keywords

Navigation