Skip to main content

Advertisement

Log in

Enhanced Dissolved Organic Matter Recovery from Saltwater Samples with Electrodialysis

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Complexities associated with dissolved organic matter (DOM) isolation from seawater have hampered compositional characterization of this key component of global carbon and nutrient cycles. DOM isolation efficiency by electrodialysis (ED) from salt-containing waters was optimized and evaluated on samples including coastal ocean seawater, open ocean seawater, artificial seawater from axenic cultures of marine phytoplankton, and artificial seawater samples containing standard compounds of different molecular sizes and charge. ED was performed with a system optimized for processing 2–10 L sample volumes. Additionally, the combination of ED and solid-phase extraction, using Bond Elut PPL exchange resin, was evaluated. Using only ED, the following DOC recoveries were achieved: coastal seawater, 71.3 ± 6.5 %; open ocean, 50.5 ± 3.1 %; phytoplankton cultures, 70.3 ± 12.5 %; glucose, 90.2 ± 2.1 %; EDTA, 67.5 ± 9.9 %; and vitamin B12, 98.3 ± 1.6 %. With the combination of PPL and ED techniques, an average DOC recovery of 76.7 ± 2.6 % was obtained for coastal seawater, but this recovery was not statistically different from seawater recoveries using only ED. Comparison of C/N ratios and fluorescence excitation emission matrices taken at the beginning and end of the recovery process for coastal samples processed using only ED indicated that the final recovered material was representative of the DOM present in the original samples. Typical recoveries using combined PPL and ED exceed those of previous isolation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arrieta JM, Mayol E, Hansman RL, Herndl GJ, Dittmar T, Duarte CM (2015) Dilution limits dissolved organic carbon utilization in the deep ocean. Science 348:331–333. doi:10.1126/science.1258955

    Article  Google Scholar 

  • Bauer JE (2015) Chapter 8—chemical characterization and cycling of dissolved organic matter. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter, 2nd edn. Academic Press, Saint Louis, pp 405–453

    Google Scholar 

  • Beaupre SR (2015) The carbon isotopic composition of marine DOC. In: Biogeochemistry of marine dissolved organic matter, 2nd edn. Academic Press Ltd, London. doi:10.1016/b978-0-12-405940-5.00006-6

  • Beckler JS, Nuzzio DB, Taillefert M (2014) Development of single-step liquid chromatography methods with ultraviolet detection for the measurement of inorganic anions in marine waters. Limnol Oceanogr Methods 12:563–576. doi:10.4319/lom.2014.12.563

    Article  Google Scholar 

  • Benner R, Strom M (1993) Measurement of dissolved organic carbon and nitrogen in natural waters—a critical evaluation of the analytical blank associated with DOC measurements by high-temperature catalytic oxidation. Mar Chem 41:153–160. doi:10.1016/0304-4203(93)90113-3

    Article  Google Scholar 

  • Benner R, Pakulski JD, McCarthy M, Hedges JI, Hatcher PG (1992) Bulk chemical characteristics of dissolved organic matter in the ocean. Science 255:1561–1564

    Article  Google Scholar 

  • Boutton TW (1991) Stable carbon isotope ratios of natural materials. I. Sample preparation and mass spectrometric analysis. In: Coleman DC, Fry, B (eds) Carbon Isotope Techniques. Academic Press, New York, pp 155–171

    Chapter  Google Scholar 

  • Chen H, Stubbins A, Perdue EM, Green NW, Helms JR, Mopper K, Hatcher PG (2014) Ultrahigh resolution mass spectrometric differentiation of dissolved organic matter isolated by coupled reverse osmosis-electrodialysis from various major oceanic water masses. Mar Chem 164:48–59. doi:10.1016/j.marchem.2014.06.002

    Article  Google Scholar 

  • Coble PG, Green SA, Blough NV, Gagosian RB (1990) Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature 348:432–435. doi:10.1038/348432a0

    Article  Google Scholar 

  • Coble PG, Del Castillo CE, Avril B (1998) Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Res Part II Top Stud Oceanogr 45:2195–2223. doi:10.1016/s0967-0645(98)00068-x

    Article  Google Scholar 

  • Diaz J, Ingall E, Benitez-Nelson C, Paterson D, de Jonge MD, McNulty I, Brandes JA (2008) Marine polyphosphate: a key player in geologic phosphorus sequestration. Science 320:652–655. doi:10.1126/science.1151751

    Article  Google Scholar 

  • Dittmar T, Koch B, Hertkorn N, Kattner G (2008) A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol Oceanogr Methods 6:230–235

    Article  Google Scholar 

  • Fellman JB, Hood E, Spencer RGM (2010) Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol Oceanogr 55:2452–2462. doi:10.4319/lo.2010.55.6.2452

    Article  Google Scholar 

  • Flite O, Eidson G, Moak J, Metts B, Sefick S (2008) Overview of stable isotope results from a comprehensive Savannah River study. Paper presented at the S.C. Water Resources Conference, Charleston, SC

  • Fry B, Garritt R, Tholke K, Neill C, Michener RH, Mersch FJ, Brand W (1996) Cryoflow: cryofocusing nanomole amounts of CO2, N-2, and SO2 from an elemental analyzer for stable isotopic analysis. Rapid Commun Mass Spectrom 10:953–958. doi:10.1002/(sici)1097-0231(19960610)10:8<953:aid-rcm534>3.0.co;2-0

    Article  Google Scholar 

  • Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of seawater analysis, 3rd edn. Wiley-VCH, New York

    Book  Google Scholar 

  • Green NW et al (2014) An intercomparison of three methods for the large-scale isolation of oceanic dissolved organic matter. Mar Chem 161:14–19. doi:10.1016/j.marchem.2014.01.012

    Article  Google Scholar 

  • Guillard RL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith W, Chanley M (eds) Culture of marine invertebrate animals. Springer, New York, pp 29–60. doi:10.1007/978-1-4615-8714-9_3

    Chapter  Google Scholar 

  • Guillard RRL, Hargraves PE (1993) Stichochrysis-immobilis is a diatom, not a chyrsophyte. Phycologia 32:234–236. doi:10.2216/i0031-8884-32-3-234.1

    Article  Google Scholar 

  • Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms. 1. Cyclotella Nana Hustedt, and Detonula Confervacea (Cleve) Gran. Can J Microbiol 8:229

    Article  Google Scholar 

  • Guo L, Wen L-S, Tang D, Santschi PH (2000) Re-examination of cross-flow ultrafiltration for sampling aquatic colloids: evidence from molecular probes. Mar Chem 69:75–90. doi:10.1016/S0304-4203(99)00097-3

    Article  Google Scholar 

  • Gurtler BK, Vetter TA, Perdue EM, Ingall E, Koprivnjak JF, Pfromm PH (2008) Combining reverse osmosis and pulsed electrical current electrodialysis for improved recovery of dissolved organic matter from seawater. J Membr Sci 323:328–336. doi:10.1016/j.memsci.2008.06.025

    Article  Google Scholar 

  • Hansell DA, Carlson CA (2015) Preface. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter, 2nd edn. Academic Press, Saint Louis, pp xvii–xviii

    Chapter  Google Scholar 

  • Helms JR et al (2015) Spectroscopic characterization of oceanic dissolved organic matter isolated by reverse osmosis coupled with electrodialysis. Mar Chem 177(Part 2):278–287. doi:10.1016/j.marchem.2015.07.007

    Article  Google Scholar 

  • Hertkorn N, Harir M, Koch BP, Michalke B, Schmitt-Kopplin P (2013) High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences 10:1583–1624. doi:10.5194/bg-10-1583-2013

    Article  Google Scholar 

  • Jaffe R, Cawley KM, Yamashita Y (2014) Applications of excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC) in assessing environmental dynamics of natural dissolved organic matter (DOM) in aquatic environments: a review. In: RosarioOrtiz F (ed) Advances in the physicochemical characterization of dissolved organic matter: impact on natural and engineered systems, ACS symposium series, vol 1160. Amer Chemical Soc, Washington, pp 27–73

    Google Scholar 

  • Kester DR, Duedall IW, Connors DN, Pttkowicz RM (1967) Preparation of artificial seawater. Limnol Oceanogr 12:177–179

    Google Scholar 

  • Koprivnjak JF, Perdue EM, Pfromm PH (2006) Coupling reverse osmosis with electrodialysis to isolate natural organic matter from fresh waters. Water Res 40:3385–3392. doi:10.1016/j.watres.2006.07.019

    Article  Google Scholar 

  • McCarthy MD, Hedges JI, Benner R (1993) The chemical composition of dissolved organic matter in seawater. Chem Geol 107:503–507. doi:10.1016/0009-2541(93)90240-j

    Article  Google Scholar 

  • Mopper K, Stubbins A, Ritchie JD, Bialk HM, Hatcher PG (2007) Advanced instrumental approaches for characterization of marine dissolved organic matter: extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy. Chem Rev 107:419–442. doi:10.1021/cr050359b

    Article  Google Scholar 

  • Pfromm PH, Tsai SP, Henry MP (1999) Electrodialysis for bleach effluent recycling in kraft pulp production: simultaneous control of chloride and other non-process elements. Can J Chem Eng 77:1231–1238

    Article  Google Scholar 

  • Repeta DJ (2015) Chapter 2—chemical characterization and cycling of dissolved organic matter. In: Carlson DAHA (ed) Biogeochemistry of marine dissolved organic matter, 2nd edn. Academic Press, Saint Louis, pp 21–65

    Chapter  Google Scholar 

  • Ruiz B, Sistat P, Huguet P, Pourcelly G, Araya-Farias M, Bazinet L (2007) Application of relaxation periods during electrodialysis of a casein solution: impact on anion-exchange membrane fouling. J Membr Sci 287:41–50. doi:10.1016/j.memsci.2006.09.046

    Article  Google Scholar 

  • Stedmon CA, Álvarez-Salgado XA (2011) Shedding light on a black box: UV–visible spectroscopic characterization of marine dissolved organic matter. In: Jiao N, Azam F, Sander S (eds) Microbial carbon pump in the ocean. AAAS, Washington DC, pp 62–63

    Google Scholar 

  • Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr Methods 6:572–579

    Article  Google Scholar 

  • Stubbins A, Niggemann J, Dittmar T (2012) Photo-lability of deep ocean dissolved black carbon. Biogeosciences 9:1661–1670. doi:10.5194/bg-9-1661-2012

    Article  Google Scholar 

  • Stubbins A, Lapierre JF, Berggren M, Prairie YT, Dittmar T, del Giorgio PA (2014) What’s in an EEM? Molecular signatures associated with dissolved organic fluorescence in boreal Canada. Environ Sci Technol 48:10598–10606. doi:10.1021/es502086e

    Article  Google Scholar 

  • Verity PG (2002) A decade of change in the Skidaway River estuary. I. Hydrography and nutrients. Estuaries 25:944–960. doi:10.1007/bf02691343

    Article  Google Scholar 

  • Vetter TA, Perdue EM, Ingall E, Koprivnjak JF, Pfromm PH (2007) Combining reverse osmosis and electrodialysis for more complete recovery of dissolved organic matter from seawater. Sep Purif Technol 56:383–387. doi:10.1016/j.seppur.2007.04.012

    Article  Google Scholar 

  • Wagner S, Jaffe R, Cawley K, Dittmar T, Stubbins A (2015) Associations between the molecular and optical properties of dissolved organic matter in the Florida Everglades, a model coastal wetland system Frontiers. Chemistry. doi:10.3389/fchem.2015.00066

    Google Scholar 

  • Walker BD, Beaupré SR, Guilderson TP, Druffel ERM, McCarthy MD (2011) Large-volume ultrafiltration for the study of radiocarbon signatures and size vs. age relationships in marine dissolved organic matter. Geochim Cosmochim Acta 75:5187–5202. doi:10.1016/j.gca.2011.06.015

    Article  Google Scholar 

  • Williams PM, Gordon LI (1970) C-13-C-12 ratios in dissolved and particulate organic matter in sea. Deep Sea Res 17:19. doi:10.1016/0011-7471(70)90085-9

    Google Scholar 

  • Young CL, Ingall ED (2010) Marine dissolved organic phosphorus composition: insights from samples recovered using combined electrodialysis/reverse osmosis. Aquat Geochem 16:563–574. doi:10.1007/s10498-009-9087-y

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant OCE 1357375 (EDI), OCE 1316036 (STD), and NASA CAN7 (YT). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of either the National Science Foundation or NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellery D. Ingall.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 708 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chambers, L.R., Ingall, E.D., Saad, E.M. et al. Enhanced Dissolved Organic Matter Recovery from Saltwater Samples with Electrodialysis. Aquat Geochem 22, 555–572 (2016). https://doi.org/10.1007/s10498-016-9306-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-016-9306-2

Keywords

Navigation