Skip to main content

Advertisement

Log in

Caspase cleavage of transcription factor Sp1 enhances apoptosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Sp1 is a ubiquitous transcription factor that regulates many genes involved in apoptosis and senescence. Sp1 also has a role in the DNA damage response; at low levels of DNA damage, Sp1 is phosphorylated by ATM and localizes to double-strand break sites where it facilitates DNA double-strand-break repair. Depletion of Sp1 increases the sensitivity of cells to DNA damage, whereas overexpression of Sp1 can drive cells into apoptosis. In response to a variety of stimuli, Sp1 can be regulated through proteolytic cleavage by caspases and/or degradation. Here, we show that activation of apoptosis through DNA damage or TRAIL-mediated activation of the extrinsic apoptotic pathway induces caspase-mediated cleavage of Sp1. Cleavage of Sp1 was coincident with the appearance of cleaved caspase 3, and produced a 70 kDa Sp1 product. In vitro analysis revealed a novel caspase cleavage site at aspartic acid 183. Mutation of aspartic acid 183 to alanine conferred resistance to cleavage, and ectopic expression of the Sp1 D183A rendered cells resistant to apoptotic stimuli, indicating that Sp1 cleavage is involved in the induction of apoptosis. The 70 kDa product resulting from caspase cleavage of Sp1 comprises amino acids 184–785. This truncated form, designated Sp1-70C, which retains transcriptional activity, induced apoptosis when overexpressed in normal epithelial cells, whereas Sp1D183A induced significantly less apoptosis. Together, these data reveal a new caspase cleavage site in Sp1 and demonstrate for the first time that caspase cleavage of Sp1 promotes apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Azizkhan JC, Jensen DE, Pierce AJ, Wade M (1993) Transcription from TATA-less promoters: dihydrofolate reductase as a model. Crit Rev Eukaryot Gene Express 3:229–254

    CAS  Google Scholar 

  2. Smale ST, Schmidt MC, Berk AJ, Baltimore D (1990) Transcriptional activation by Sp1 as directed through TATA or initiator: specific requirement for mammalian transcription factor IID. Proc Natl Acad Sci USA 87:4509–4513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Milavetz BI (2002) SP1 and AP-1 elements direct chromatin remodeling in SV40 chromosomes during the first 6 h of infection. Virology 294:170–179

    Article  CAS  PubMed  Google Scholar 

  4. Marin M, Karis A, Visser P, Grosveld F, Philipsen S (1997) Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation. Cell 89:619–628

    Article  CAS  PubMed  Google Scholar 

  5. Tan NY, Khachigian LM (2009) Sp1 phosphorylation and its regulation of gene transcription. Mol Cell Biol 29:2483–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Swingler TE, Kevorkian L, Culley KL, Illman SA, Young DA, Parker AE, Lohi J, Clark IM (2010) MMP28 gene expression is regulated by Sp1 transcription factor acetylation. Biochem J 427:391

    Article  CAS  PubMed  Google Scholar 

  7. Majumdar G, Wright J, Markowitz P, Martinez-Hernandez A, Raghow R, Solomon SS (2004) Insulin stimulates and diabetes inhibits O-linked N-acetylglucosamine transferase and O-glycosylation of Sp1. Diabetes 53:3184–3192

    Article  CAS  PubMed  Google Scholar 

  8. Brasse-Lagnel C, Fairand A, Lavoinne A, Husson A (2003) Glutamine stimulates argininosuccinate synthetase gene expression through cytosolic O-glycosylation of Sp1 in Caco-2 cells. J Biol Chem 278:52504–52510

    Article  CAS  PubMed  Google Scholar 

  9. Kang HT, Ju JW, Cho JW, Hwang ES (2003) Down-regulation of Sp1 activity through modulation of O-glycosylation by treatment with a low glucose mimetic, 2-deoxyglucose. J Biol Chem 278:51223–51231

    Article  CAS  PubMed  Google Scholar 

  10. Majumdar G, Harmon A, Candelaria R, Martinez-Hernandez A, Raghow R, Solomon SS (2003) O-Glycosylation of Sp1 and transcriptional regulation of the calmodulin gene by insulin and glucagon. Am J Physiol Endocrinol Metab 285:E584–E591

    Article  CAS  PubMed  Google Scholar 

  11. Spengler ML, Brattain MG (2006) Sumoylation inhibits cleavage of Sp1 N-terminal negative regulatory domain and inhibits Sp1-dependent transcription. J Biol Chem 281:5567–5574

    Article  CAS  PubMed  Google Scholar 

  12. Beishline K, Kelly CM, Olofsson BA, Koduri S, Emrich J, Greenberg RA, Azizkhan-Clifford J (2012) Sp1 Facilitates DNA double-strand break repair through a nontranscriptional mechanism. Mol Cell Biol 32:3790–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olofsson BA, Kelly CM, Kim J, Hornsby SM, Azizkhan-Clifford J (2007) Phosphorylation of Sp1 in response to DNA damage by ataxia telangiectasia-mutated kinase. Mol Cancer Res 5:1319–1330

    Article  CAS  PubMed  Google Scholar 

  14. Deniaud E, Baguet J, Mathieu AL, Pages G, Marvel J, Leverrier Y (2006) Overexpression of Sp1 transcription factor induces apoptosis. Oncogene 25:7096–7105

    Article  CAS  PubMed  Google Scholar 

  15. Deniaud E, Baguet J, Chalard R, Blanquier B, Brinza L, Meunier J, Michallet MC, Laugraud A, Ah-Soon C, Wierinckx A, Castellazzi M, Lachuer J, Gautier C, Marvel J, Leverrier Y (2009) Overexpression of transcription factor Sp1 leads to gene expression perturbations and cell cycle inhibition. PLoS ONE 4:e7035

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chuang JY, Wu CH, Lai MD, Chang WC, Hung JJ (2009) Overexpression of Sp1 leads to p53-dependent apoptosis in cancer cells. Int J Cancer 125:2066–2076

    Article  CAS  PubMed  Google Scholar 

  17. Kavurma MM, Santiago FS, Bonfoco E, Khachigian LM (2001) Sp1 phosphorylation regulates apoptosis via extracellular FasL-Fas engagement. J Biol Chem 276:4964–4971

    Article  CAS  PubMed  Google Scholar 

  18. Chou CF, Peng HW, Wang CY, Yang YT, Han SH (2000) An Sp1 binding site involves the transcription of the Fas ligand gene induced by PMA and ionomycin in Jurkat cells. J Biomed Sci 7:136–143

    Article  CAS  PubMed  Google Scholar 

  19. Black AR, Black JD, Azizkhan-Clifford J (2001) Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 188:143–160

    Article  CAS  PubMed  Google Scholar 

  20. Xu R, Zhang P, Huang J, Ge S, Lu J, Qian G (2007) Sp1 and Sp3 regulate basal transcription of the survivin gene. Biochem Biophys Res Commun 356:286–292

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Xie M, Yang J, Yang D, Deng R, Wan Y, Yan B (2006) The expression of antiapoptotic protein survivin is transcriptionally upregulated by DEC1 primarily through multiple sp1 binding sites in the proximal promoter. Oncogene 25:3296–3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saitoh Y, Yaginuma Y, Ishikawa M (1999) Analysis of Bcl-2, Bax and Survivin genes in uterine cancer. Int J Oncol 15:137–141

    CAS  PubMed  Google Scholar 

  23. Falleni M, Pellegrini C, Marchetti A, Roncalli M, Nosotti M, Palleschi A, Santambrogio L, Coggi G, Bosari S (2005) Quantitative evaluation of the apoptosis regulating genes Survivin, Bcl-2 and Bax in inflammatory and malignant pleural lesions. Lung Cancer 48:211–216

    Article  PubMed  Google Scholar 

  24. Dasari A, Bartholomew JN, Volonte D, Galbiati F (2006) Oxidative stress induces premature senescence by stimulating caveolin-1 gene transcription through p38 mitogen-activated protein kinase/Sp1-mediated activation of two GC-rich promoter elements. Cancer Res 66:10805–10814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Volonte D, Zhang K, Lisanti MP, Galbiati F (2002) Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Mol Biol Cell 13:2502–2517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277:831–834

    Article  CAS  PubMed  Google Scholar 

  27. Su K, Roos MD, Yang X, Han I, Paterson AJ, Kudlow JE (1999) An N-terminal region of Sp1 targets its proteasome-dependent degradation in vitro. J Biol Chem 274:15194–15202

    Article  CAS  PubMed  Google Scholar 

  28. Han I, Kudlow JE (1997) Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility. Mol Cell Biol 17:2550–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mortensen ER, Marks PA, Shiotani A, Merchant JL (1997) Epidermal growth factor and okadaic acid stimulate Sp1 proteolysis. J Biol Chem 272:16540–16547

    Article  CAS  PubMed  Google Scholar 

  30. Piedrafita FJ, Pfahl M (1997) Retinoid-induced apoptosis and Sp1 cleavage occur independently of transcription and require caspase activation. Mol Cell Biol 17:6348–6358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rickers A, Peters N, Badock V, Beyaert R, Vandenabeele P, Dorken B, Bommert K (1999) Cleavage of transcription factor SP1 by caspases during anti-IgM-induced B-cell apoptosis. Eur J Biochem 261:269–274

    Article  CAS  PubMed  Google Scholar 

  32. Wang YT, Yang WB, Chang WC, Hung JJ (2011) Interplay of posttranslational modifications in Sp1 mediates Sp1 stability during cell cycle progression. J Mol Biol 414:1–14

    Article  CAS  PubMed  Google Scholar 

  33. Dynan WS, Saffer JD, Lee WS, Tjian R (1985) Transcription factor Sp1 recognizes promoter sequences from the monkey genome that are simian virus 40 promoter. Proc Natl Acad Sci USA 82:4915–4919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Enomoto M, Bunge MB, Tsoulfas P (2013) A multifunctional neurotrophin with reduced affinity to p75NTR enhances transplanted Schwann cell survival and axon growth after spinal cord injury. Exp Neurol 248:170–182

    Article  CAS  PubMed  Google Scholar 

  35. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  CAS  PubMed  Google Scholar 

  36. Yang XH, Sladek TL, Liu X, Butler BR, Froelich CJ, Thor AD (2001) Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin- and etoposide-induced apoptosis. Cancer Res 61:348–354

    CAS  PubMed  Google Scholar 

  37. Xue LY, Chiu SM, Oleinick NL (2001) Photodynamic therapy-induced death of MCF-7 human breast cancer cells: a role for caspase-3 in the late steps of apoptosis but not for the critical lethal event. Exp Cell Res. 263;145–155

    Article  CAS  PubMed  Google Scholar 

  38. Blanc C, Deveraux QL, Krajewski S, Janicke RU, Porter AG, Reed JC, Jaggi R, Marti A (2000) Caspase-3 is essential for procaspase-9 processing and cisplatin-induced apoptosis of MCF-7 breast cancer cells. Cancer Res 60:4386–4390

    CAS  PubMed  Google Scholar 

  39. Kurokawa H, Nishio K, Fukumoto H, Tomonari A, Suzuki T, Saijo N (1999) Alteration of caspase-3 (CPP32/Yama/apopain) in wild-type MCF-7, breast cancer cells. Oncol Rep 6:33–37

    CAS  PubMed  Google Scholar 

  40. Astrinidis A, Kim J, Kelly CM, Olofsson BA, Torabi B, Sorokina EM, Azizkhan-Clifford J (2010) The transcription factor SP1 regulates centriole function and chromosomal stability through a functional interaction with the mammalian target of rapamycin/raptor complex, Genes Chromosomes Cancer 49:282–297

    CAS  PubMed  Google Scholar 

  41. Dynan WS, Sazer S, Tjian R, Schimke RT (1986) Transcription factor Sp1 recognizes a DNA sequence in the mouse dihydrofolate reductase promoter. Nature 319:246–248

    Article  CAS  PubMed  Google Scholar 

  42. Chowdhury I, Tharakan B, Bhat GK (2008) Caspases: an update. Comp Biochem Phys B 151:10–27

    Article  Google Scholar 

  43. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  CAS  PubMed  Google Scholar 

  44. Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differentiation 6:1028–1042

    Article  CAS  PubMed  Google Scholar 

  45. Mahrus S, Trinidad JC, Barkan DT, Sali A, Burlingame AL, Wells JA (2008) Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell 134:866–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Courey AJ, Tjian R (1988) Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55:887–898

    Article  CAS  PubMed  Google Scholar 

  47. Pascal E, Tjian R (1991) Different activation domains of Sp1 govern formation of multimers and mediate transcriptional synergism. Genes Dev 5:1646–1656

    Article  CAS  PubMed  Google Scholar 

  48. Kadonaga JT, Courey AJ, Ladika J, Tjian R (1988) Distinct regions of Sp1 modulate DNA binding and transcriptional activation. Science 242:1566–1570

    Article  CAS  PubMed  Google Scholar 

  49. Wang J, Kang M, Qin YT, Wei ZX, Xiao JJ, Wang RS (2015) Sp1 is over-expressed in nasopharyngeal cancer and is a poor prognostic indicator for patients receiving radiotherapy. Int J Clin Exp Pathol 8:6936–6943

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hsu TI, Wang MC, Chen SY, Yeh YM, Su WC, Chang WC, Hung JJ (2012) Sp1 expression regulates lung tumor progression. Oncogene 31:3973–3988

    Article  CAS  PubMed  Google Scholar 

  51. Guan H, Cai J, Zhang N, Wu J, Yuan J, Li J, Li M (2012) Sp1 is upregulated in human glioma, promotes MMP-2-mediated cell invasion and predicts poor clinical outcome. Int J Cancer 130:593–601

    Article  CAS  PubMed  Google Scholar 

  52. Jiang NY, Woda BA, Banner BF, Whalen GF, Dresser KA, Lu D (2008) Sp1, a new biomarker that identifies a subset of aggressive pancreatic ductal adenocarcinoma. Cancer Epidemiol Biomark Prev 17:1648–1652

    Article  CAS  Google Scholar 

  53. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  54. Beishline K, Azizkhan-Clifford J (2015) Sp1 and the ‘hallmarks of cancer’. FEBS J 282:224–258

    Article  CAS  PubMed  Google Scholar 

  55. Kaina B, Christmann M, Naumann S, Roos WP (2007) MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair 6:1079–1099

    Article  CAS  PubMed  Google Scholar 

  56. Aas T, Borresen AL, Geisler S, Smith-Sorensen B, Johnsen H, Varhaug JE, Akslen LA, Lonning PE (1996) Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 2:811–814

    Article  CAS  PubMed  Google Scholar 

  57. Asanuma K, Tsuji N, Endoh T, Yagihashi A, Watanabe N (2004) Survivin enhances Fas ligand expression via up-regulation of specificity protein 1-mediated gene transcription in colon cancer cells. J Immunol 172:3922–3929

    Article  CAS  PubMed  Google Scholar 

  58. Wu J, Ling X, Pan D, Apontes P, Song L, Liang P, Altieri DC, Beerman T, Li F (2005) Molecular mechanism of inhibition of survivin transcription by the GC-rich sequence-selective DNA binding antitumor agent, hedamycin: evidence of survivin down-regulation associated with drug sensitivity. J Biol Chem 280:9745–9751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Iwahori S, Yasui Y, Kudoh A, Sato Y, Nakayama S, Murata T, Isomura H, Tsurumi T (2008) Identification of phosphorylation sites on transcription factor Sp1 in response to DNA damage and its accumulation at damaged sites. Cell Signal 20:1795–1803

    Article  CAS  PubMed  Google Scholar 

  60. Chen F, Arseven OK, Cryns VL (2004) Proteolysis of the mismatch repair protein MLH1 by caspase-3 promotes DNA damage-induced apoptosis. J Biol Chem 279:27542–27548

    Article  CAS  PubMed  Google Scholar 

  61. Zhang J, Powell SN (2005) The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Mol Cancer Res 3:531–539

    Article  CAS  PubMed  Google Scholar 

  62. Cressman VL, Backlund DC, Avrutskaya AV, Leadon SA, Godfrey V, Koller BH (2006) Growth retardation, DNA repair defects, and lack of spermatogenesis in BRCA1-deficient mice. Mol Cell Biol 26:9571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reid LJ, Shakya R, Modi AP, Lokshin M, Cheng JT, Jasin M, Baer R, Ludwig T (2008) E3 ligase activity of BRCA1 is not essential for mammalian cell viability or homology-directed repair of double-strand DNA breaks. Proc Natl Acad Sci USA. 105:20876–20881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martin SA, Ouchi T (2005) BRCA1 phosphorylation regulates caspase-3 activation in UV-induced apoptosis. Cancer Res 65:10657–10662

    Article  CAS  PubMed  Google Scholar 

  65. Gu M, Li H, Shen C, Wu L, Liu W, Miao L, Zheng C (2010) Cloning and characterization of a new BRCA1 variant: a role for BRCT domains in apoptosis. Cancer Lett 295:205–213

    Article  CAS  PubMed  Google Scholar 

  66. Su F, Smilenov LB, Ludwig T, Zhou L, Zhu J, Zhou G, Hall EJ (2010) Hemizygosity for Atm and Brca1 influence the balance between cell transformation and apoptosis. Radiat Oncol 5:15

    Article  PubMed  PubMed Central  Google Scholar 

  67. Okita N, Yoshimura M, Watanabe K, Minato S, Kudo Y, Higami Y, Tanuma S (2013) CHK1 cleavage in programmed cell death is intricately regulated by both caspase and non-caspase family proteases. Biochim Biophys Acta 1830:2204–2213

    Article  CAS  PubMed  Google Scholar 

  68. Zhan Q, Jin S, Ng B, Plisket J, Shangary S, Rathi A, Brown KD, Baskaran R (2002) Caspase-3 mediated cleavage of BRCA1 during UV-induced apoptosis. Oncogene 21:5335–5345

    Article  CAS  PubMed  Google Scholar 

  69. Matsuura K, Wakasugi M, Yamashita K, Matsunaga T (2008) Cleavage-mediated activation of Chk1 during apoptosis. J Biol Chem 283:25485–25491

    Article  CAS  PubMed  Google Scholar 

  70. Solier S, Pommier Y (2011) MDC1 cleavage by caspase-3: a novel mechanism for inactivating the DNA damage response during apoptosis. Cancer Res 71:906–913

    Article  CAS  PubMed  Google Scholar 

  71. Huang Y, Nakada S, Ishiko T, Utsugisawa T, Datta R, Kharbanda S, Yoshida K, Talanian RV, Weichselbaum R, Kufe D, Yuan ZM (1999) Role for caspase-mediated cleavage of Rad51 in induction of apoptosis by DNA damage. Mol Cell Biol 19:2986–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sakai W, Sugasawa K (2014) FANCD2 is a target for caspase 3 during DNA damage-induced apoptosis. FEBS Lett 588:3778–3785

    Article  CAS  PubMed  Google Scholar 

  73. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M, Jeggo PA (2008) ATM signaling facilitates repair1 of DNA double-strand breaks associated with heterochromatin. Mol Cell 31:167–77

    Article  CAS  PubMed  Google Scholar 

  74. Morrison C, Sonoda E, Takao N, Shinohara A, Yamamoto K, Takeda S (2000) The controlling role of ATM in homologous recombinational repair of DNA damage. EMBO J 19:463–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kuhne M, Riballo E, Rief N, Rothkamm K, Jeggo PA, Lobrich M (2004) A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity. Cancer Res 64:500–508

    Article  PubMed  Google Scholar 

  76. Carlessi L, De Filippis L, Lecis D, Vescovi A, Delia D (2009) DNA-damage response, survival and differentiation in vitro of a human neural stem cell line in relation to ATM expression. Cell Death Differ 16:795–806

    Article  CAS  PubMed  Google Scholar 

  77. Lai JM, Chang JT, Wen CL, Hsu SL (2009) Emodin induces a reactive oxygen species-dependent and ATM-p53-Bax mediated cytotoxicity in lung cancer cells. Eur J Pharmacol 623:1–9

    Article  CAS  PubMed  Google Scholar 

  78. Chong MJ, Murray MR, Gosink EC, Russell HR, Srinivasan A, Kapsetaki M, Korsmeyer SJ, McKinnon PJ (2000) Atm and bax cooperate in ionizing radiation-induced apoptosis in the central nervous system. Proc Natl Acad Sci USA 97:889–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Demontis S, Rigo C, Piccinin S, Mizzau M, Sonego M, Fabris M, Brancolini C, Maestro R (2006) Twist is substrate for caspase cleavage and proteasome-mediated degradation. Cell Death Diff 13:335–345

    Article  CAS  Google Scholar 

  80. Borges HL, Bird J, Wasson K, Cardiff RD, Varki N, Eckmann L, Wang JY (2005) Tumor promotion by caspase-resistant retinoblastoma protein. Proc Natl Acad Sci USA 102:15587–15592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Puissant A, Fenouille N, Robert G, Jacquel A, Bassil CF, Colosetti P, Luciano F, Auberger P (2014) A new posttranslational regulation of REDD1/DDIT4 through cleavage by caspase 3 modifies its cellular function. Cell Death Dis 5:e1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yeh TC, Bratton SB (2013) Caspase-dependent regulation of the ubiquitin-proteasome system through direct substrate targeting. Proc Natl Acad Sci USA 110:14284–14289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by College of Medicine, Drexel University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane Azizkhan-Clifford.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17738 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabi, B., Flashner, S., Beishline, K. et al. Caspase cleavage of transcription factor Sp1 enhances apoptosis. Apoptosis 23, 65–78 (2018). https://doi.org/10.1007/s10495-017-1437-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-017-1437-4

Keywords

Navigation