Skip to main content
Log in

Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Anacardic acid is a medicinal phytochemical that inhibits proliferation of fungal as well as several types of cancer cells. It induces apoptotic cell death in various cell types, but very little is known about the mechanism involved in the process. Here, we used budding yeast Saccharomyces cerevisiae as a model to study the involvement of some key elements of apoptosis in the anacardic acid-induced cell death. Plasma membrane constriction, chromatin condensation, DNA degradation, and externalization of phosphatidylserine (PS) indicated that anacardic acid induces apoptotic cell death in S. cerevisiae. However, the exogenous addition of broad-spectrum caspase inhibitor Z-VAD-FMK or deletion of the yeast caspase Yca1 showed that the anacardic acid-induced cell death is caspase independent. Apoptosis-inducing factor (AIF1) deletion mutant was resistant to the anacardic acid-induced cell death, suggesting a key role of Aif1. Overexpression of Aif1 made cells highly susceptible to anacardic acid, further confirming that Aif1 mediates anacardic acid-induced apoptosis. Interestingly, instead of the increase in the intracellular reactive oxygen species (ROS) normally observed during apoptosis, anacardic acid caused a decrease in the intracellular ROS levels. Quantitative real-time PCR analysis showed downregulation of the BIR1 survivin mRNA expression during the anacardic acid-induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kubo I, Kinst-Hori I, Yokokawa Y (1994) Tyrosinase inhibitors from Anacardium occidentale fruits. J Nat Prod 57:545–551

    Article  CAS  PubMed  Google Scholar 

  2. Itokawa H, Totsuka N, Nakahara K, Takeya K, Lepoittevin J-P, Asakawa Y (1987) Antitumor principles from Ginkgo biloba L. Chem Pharm Bull 35:3016–3020

    Article  CAS  PubMed  Google Scholar 

  3. Tan J, Chen B, He L et al (2012) Anacardic acid (6-pentadecylsalicylic acid) induces apoptosis of prostate cancer cells through inhibition of androgen receptor and activation of p53 signaling. Chin J Cancer Res 24:275–283

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sun Y, Jiang X, Chen S, Price BD (2006) Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett 580:4353–4356

    Article  CAS  PubMed  Google Scholar 

  5. Muroi H, Kubo I (1996) Antibacterial activity of anacardic acid and totarol, alone and in combination with methicillin, against methicillin resistant Staphylococcus aureus. J Appl Bacteriol 80:387–394

    Article  CAS  PubMed  Google Scholar 

  6. Muzaffar S, Bose C, Banerji A, Nair BG, Chattoo BB (2016) Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae. Appl Microbiol Biotechnol 100:323–335

    Article  CAS  PubMed  Google Scholar 

  7. Hundt J, Li Z, Liu Q (2015) The inhibitory effects of anacardic acid on hepatitis C virus life cycle. PloS One 10:e0117514

    Article  PubMed  PubMed Central  Google Scholar 

  8. Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK (2003) Small molecule modulators of histone acetyltransferase p300. J Biol Chem 278:19134–19140

    Article  CAS  PubMed  Google Scholar 

  9. Sung B, Pandey MK, Ahn KS et al (2008) Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-κB–regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-κBα kinase, leading to potentiation of apoptosis. Blood 111:4880–4891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  CAS  PubMed  Google Scholar 

  11. Green DR (2005) Apoptotic pathways: ten minutes to dead. Cell 121:671–674

    Article  CAS  PubMed  Google Scholar 

  12. Lewis K (2000) Programmed death in bacteria. Microbiol Mol Biol Rev 64:503–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Golstein P, Aubry L, Levraud J-P (2003) Cell-death alternative model organisms: why and which? Nat Rev Mol Cell Biol 4:798–807

    Article  CAS  PubMed  Google Scholar 

  14. Lu B (2006) Programmed cell death in fungi. Growth, differentiation and sexuality. Springer, Berlin, pp 167–187

    Book  Google Scholar 

  15. Fröhlich K-U, Madeo F (2000) Apoptosis in yeast–a monocellular organism exhibits altruistic behaviour. FEBS Lett 473:6–9

    Article  PubMed  Google Scholar 

  16. Fabrizio P, Longo VD (2008) Chronological aging-induced apoptosis in yeast. Biochim Biophys Acta (BBA) Mol Cell Res 1783:1280–1285

    Article  CAS  Google Scholar 

  17. Sharon A, Finkelstein A, Shlezinger N, Hatam I (2009) Fungal apoptosis: function, genes and gene function. FEMS Microbiol Rev 33:833–854

    Article  CAS  PubMed  Google Scholar 

  18. Madeo F, Fröhlich E, Ligr M et al (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ludovico P, Sousa MJ, Silva MT, Leão Cl, Côrte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147:2409–2415

    Article  CAS  PubMed  Google Scholar 

  20. Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  CAS  PubMed  Google Scholar 

  21. Kuwana T, Newmeyer DD (2003) Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 15:691–699

    Article  CAS  PubMed  Google Scholar 

  22. Cai J, Yang J, Jones D (1998) Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta (BBA) Bioenerg 1366:139–149.

    Article  CAS  Google Scholar 

  23. Wissing S, Ludovico P, Herker E et al (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li F, Flanary PL, Altieri DC, Dohlman HG (2000) Cell division regulation by BIR1, a member of the inhibitor of apoptosis family in yeast. J Biol Chem 275:6707–6711

    Article  CAS  PubMed  Google Scholar 

  25. Uren AG, Beilharz T, O’Connell MJ et al (1999) Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division. Proc Natl Acad Sci 96:10170–10175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walter D, Wissing S, Madeo F, Fahrenkrog B (2006) The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2. J Cell Sci 119:1843–1851

    Article  CAS  PubMed  Google Scholar 

  27. Owsianowski E, Walter D, Fahrenkrog B (2008) Negative regulation of apoptosis in yeast. Biochim Biophys Acta (BBA) Mol Cell Res 1783:1303–1310

    Article  CAS  Google Scholar 

  28. Guthrie C, Fink GR (2002) Guide to yeast genetics and molecular and cell biology: part C. Gulf Professional Publishing, Houston

    Google Scholar 

  29. Driscoll R, Hudson A, Jackson SP (2007) Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315:649–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Omanakuttan A, Nambiar J, Harris RM et al (2012) Anacardic acid inhibits the catalytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9. Mol Pharmacol 82:614–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Madeo F, Fröhlich E, Fröhlich K-U (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139:729–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pendergrass W, Wolf N, Poot M (2004) Efficacy of MitoTracker Green™ and CMXRosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry Part A 61:162–169

    Article  CAS  Google Scholar 

  33. Machida K, Tanaka T, Fujita K-I, Taniguchi M (1998) Farnesol-induced generation of reactive oxygen species via indirect inhibition of the mitochondrial electron transport chain in the yeast Saccharomyces cerevisiae. J Bacteriol 180:4460–4465

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Madeo F, Herker E, Maldener C et al (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917

    Article  CAS  PubMed  Google Scholar 

  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  36. Ly JD, Grubb D, Lawen A (2003) The mitochondrial membrane potential (∆ψm) in apoptosis; an update. Apoptosis 8:115–128

    Article  CAS  PubMed  Google Scholar 

  37. Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12:835–840

    Article  CAS  PubMed  Google Scholar 

  38. Simon H-U, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  CAS  PubMed  Google Scholar 

  39. Masuoka N, Kubo I (2004) Characterization of xanthine oxidase inhibition by anacardic acids. Biochim Biophys Acta (BBA) Mol Basis Dis 1688:245–249

    Article  CAS  Google Scholar 

  40. Wysocki R, Kron SJ (2004) Yeast cell death during DNA damage arrest is independent of caspase or reactive oxygen species. J Cell Biol 166:311–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Park Y-J, Sudhoff KB, Andrews AJ, Stargell LA, Luger K (2008) Histone chaperone specificity in Rtt109 activation. Nat Struct Mol Biol 15:957–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Candé C, Cohen I, Daugas E et al (2002) Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 84:215–222

    Article  PubMed  Google Scholar 

  43. Raj MH, Yashaswini B, Rössler J, Salimath BP (2016) Combinatorial treatment with anacardic acid followed by TRAIL augments induction of apoptosis in TRAIL resistant cancer cells by the regulation of p53, MAPK and NFκβ pathways. Apoptosis 21:578–593

    Article  Google Scholar 

  44. Liu Z, Sun Y (2011) Role of Tip60 tumor suppressor in DNA repair pathway. Chin Sci Bull 56:1212–1215

    Article  CAS  Google Scholar 

  45. Sukumari-Ramesh S, Singh N, Jensen MA, Dhandapani KM, Vender JR (2011) Anacardic acid induces caspase-independent apoptosis and radiosensitizes pituitary adenoma cells: laboratory investigation. J Neurosurg 114:1681–1690

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India for the financial support. Suhail Muzaffar would like to thank European Molecular Biology Organisation (EMBO) for the short-term fellowship. We would like to acknowledge Prof. Frank Madeo, University of Graz (Austria) and Prof. Stephen P. Jackson, University of Cambridge (UK) for providing us the yeast strains used in this study.

Author contributions

SM designed and performed the experiments. BBC was involved in the critical analysis of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhail Muzaffar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human or animals subjects.

Additional information

Bharat B. Chattoo—deceased.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 290 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzaffar, S., Chattoo, B.B. Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae . Apoptosis 22, 463–474 (2017). https://doi.org/10.1007/s10495-016-1330-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1330-6

Keywords

Navigation