Skip to main content

Advertisement

Log in

Dynamic quantitative proteomics characterization of TNF-α-induced necroptosis

  • Short Communication
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Emerging evidence suggested that necroptosis has essential functions in many human inflammatory diseases, but the molecular mechanisms of necroptosis remain unclear. Here, we employed SILAC quantitatively dynamic proteomics to compare the protein changes during TNF-α-induced necroptosis at different time points in murine fibrosarcoma L929 cells with caspase-8 deficiency, and then performed the systematical analysis on the signaling networks involved in the progress using bioinformatics methods. Our results showed that a total of 329, 421 and 378 differentially expressed proteins were detected at three stages of necroptosis, respectively. Gene ontology and ingenuity pathway analysis (IPA) revealed that the proteins regulated at early stages of necroptosis (2, 6 h) were mainly involved in mitochondria dysfunction, oxidative phosphorylation and Nrf-2 signaling, while the expression levels of the proteins related to ubiquitin, Nrf-2, and NF-κB pathways were found to have changes at last stages of necroptosis (6, 18 h). Taken together, we demonstrated for the first time that dysfunction of mitochondria and ubiquitin–proteasome signaling contributed to the initiation and execution of necroptosis. These findings may provide clues for the identification of important regulators in necroptosis and the development of novel therapeutic strategies for the related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Lockshin RA, William CM (1965) Programmed cell death. 3. Neural control of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol 11:601–610

    Article  CAS  PubMed  Google Scholar 

  2. Dvoriantchikova G, Degterev A, Ivanov D (2014) Retinal ganglion cell (RGC) programmed necrosis contributes to ischemia-reperfusion-induced retinal damage. Exp Eye Res 123:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rosenbaum DM, Degterev A, David J et al (2010) Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia–reperfusion injury model. J Neurosci Res 88:1569–1576

    CAS  PubMed  Google Scholar 

  4. Lin J, Li H, Yang M et al (2013) A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep 3:200–210

    Article  CAS  PubMed  Google Scholar 

  5. Re DB, Le Verche V, Yu C et al (2014) Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 81:1001–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pan T, Wu S, He X et al (2014) Necroptosis takes place in human immunodeficiency virus type-1 (HIV-1)-infected CD4 + T lymphocytes. PloS one 9:e93944

    Article  PubMed  PubMed Central  Google Scholar 

  7. Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370:455–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wertz IE, O’Rourke KM, Zhou H et al (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430:694–699

    Article  CAS  PubMed  Google Scholar 

  9. Vanden Berghe T, Vanlangenakker N, Parthoens E et al (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17:922–930

    Article  CAS  PubMed  Google Scholar 

  10. Zhang DW, Shao J, Lin J et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336

    Article  CAS  PubMed  Google Scholar 

  11. Wang Z, Jiang H, Chen S, Du F, Wang X (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148:228–243

    Article  CAS  PubMed  Google Scholar 

  12. Tait SW, Oberst A, Quarato G et al (2013) Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep 5:878–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteom 1:376–386

    Article  CAS  Google Scholar 

  14. Yan GR, Tan Z, Wang Y et al (2013) Quantitative proteomics characterization on the antitumor effects of isodeoxyelephantopin against nasopharyngeal carcinoma. Proteomics 13:3222–3232

    Article  CAS  PubMed  Google Scholar 

  15. Yan GR, Yin XF, Xiao CL, Tan ZL, Xu SH, He QY (2011) Identification of novel signaling components in genistein-regulated signaling pathways by quantitative phosphoproteomics. J Proteom 75:695–707

    Article  CAS  Google Scholar 

  16. Yan GR, Xu SH, Tan ZL, Liu L, He QY (2011) Global identification of miR-373-regulated genes in breast cancer by quantitative proteomics. Proteomics 11:912–920

    Article  CAS  PubMed  Google Scholar 

  17. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  18. Bindea G, Mlecnik B, Hackl H et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Esteso G, Mora MI, Garrido JJ, Corrales F, Moreno A (2008) Proteomic analysis of the porcine platelet proteome and alterations induced by thrombin activation. J Proteom 71:547–560

    Article  CAS  Google Scholar 

  20. Jimenez-Marin A, Collado-Romero M, Ramirez-Boo M, Arce C, Garrido JJ. (2009) Biological pathway analysis by arrayunlock and ingenuity pathway analysis. BMC Proceed 3(Suppl 4):S6

    Article  Google Scholar 

  21. Li B, Xu WW, Guan XY et al (2016) Competitive binding between Id1 and E2F1 to Cdc20 regulates E2F1 degradation and thymidylate synthase expression to promote esophageal cancer chemoresistance. Clin Cancer Res 22:1243–1255

    Article  CAS  PubMed  Google Scholar 

  22. Silke J, Rickard JA, Gerlic M (2015) The diverse role of RIP kinases in necroptosis and inflammation. Nat Immunol 16:689–697

    Article  CAS  PubMed  Google Scholar 

  23. Chen W, Zhou Z, Li L et al (2013) Diverse sequence determinants control human and mouse receptor interacting protein 3 (RIP3) and mixed lineage kinase domain-like (MLKL) interaction in necroptotic signaling. J Biol Chem 288:16247–16261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Begriche K, Igoudjil A, Pessayre D, Fromenty B (2006) Mitochondrial dysfunction in NASH: causes, consequences and possible means to prevent it. Mitochondrion 6:1–28

    Article  CAS  PubMed  Google Scholar 

  25. Irrinki KM, Mallilankaraman K, Thapa RJ et al (2011) Requirement of FADD, NEMO, and BAX/BAK for aberrant mitochondrial function in tumor necrosis factor alpha-induced necrosis. Mol Cell Biol 31:3745–3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee EW, Kim JH, Ahn YH et al (2012) Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis. Nat Commun 3:978

    Article  PubMed  Google Scholar 

  27. De Vitto H, Perez-Valencia J, Radosevich JA (2016) Glutamine at focus: versatile roles in cancer. Tumour Biol 37(2):1541–1558

    Article  PubMed  Google Scholar 

  28. Lin W, Tongyi S (2014) Role of Bax/Bcl-2 family members in green tea polyphenol induced necroptosis of p53-deficient Hep3B cells. Tumour Biol 35:8065–8075

    Article  CAS  PubMed  Google Scholar 

  29. Perciavalle RM, Stewart DP, Koss B et al (2012) Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol 14:575–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karch J, Kanisicak O, Brody MJ, Sargent MA, Michael DM, Molkentin JD (2015) Necroptosis Interfaces with MOMP and the MPTP in mediating cell death. PloS One 10:e0130520

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sun L, Wang H, Wang Z et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148:213–227

    Article  CAS  PubMed  Google Scholar 

  32. Zhao J, Jitkaew S, Cai Z et al (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA 109:5322–5327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kobayashi A, Kang MI, Okawa H et al (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24:7130–7139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program “973” of China (2011CB910700 to Q.Y.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan-Ting Liu, Bin Li or Qing-Yu He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 557 KB)

Supplementary material 2 (DOCX 38 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, ZH., Li, YJ. et al. Dynamic quantitative proteomics characterization of TNF-α-induced necroptosis. Apoptosis 21, 1438–1446 (2016). https://doi.org/10.1007/s10495-016-1300-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1300-z

Keywords

Navigation