Skip to main content

Advertisement

Log in

Inhibition of autophagy by chloroquine induces apoptosis in primary effusion lymphoma in vitro and in vivo through induction of endoplasmic reticulum stress

  • Published:
Apoptosis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Autophagy plays a crucial role in cancer cell survival and the inhibition of autophagy is attracting attention as an emerging strategy for the treatment of cancer. Chloroquine (CQ) is an anti-malarial drug, and is also known as an inhibitor of autophagy. Recently, it has been found that CQ induces cancer cell death through the inhibition of autophagy; however, the underlying mechanism is not entirely understood. In this study, we identified the role of CQ-induced cancer cell death using Primary Effusion Lymphoma (PEL) cells. We found that a CQ treatment induced caspase-dependent apoptosis in vitro. CQ also suppressed PEL cell growth in a PEL xenograft mouse model. We showed that CQ activated endoplasmic reticulum (ER) stress signal pathways and induced CHOP, which is an inducer of apoptosis. CQ-induced cell death was significantly decreased by salbrinal, an ER stress inhibitor, indicating that CQ-induced apoptosis in PEL cells depended on ER stress. We show here for the first time that the inhibition of autophagy induces ER stress-mediated apoptosis in PEL cells. Thus, the inhibition of autophagy is a novel strategy for cancer chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nador RG, Cesarman E, Chadburn A et al (1996) Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi’s sarcoma-associated herpes virus. Blood 88:645–656

    CAS  PubMed  Google Scholar 

  2. Chen YB, Rahemtullah A, Hochberg E (2007) Primary effusion lymphoma. Oncologist 12:569–576

    Article  PubMed  Google Scholar 

  3. Boulanger E, Gerard L, Gabarre J et al (2005) Prognostic factors and outcome of human herpesvirus 8-associated primary effusion lymphoma in patients with AIDS. J Clin Oncol 23:4372–4380

    Article  PubMed  Google Scholar 

  4. Okada S, Goto H, Yotsumoto M (2014) Current status of treatment for primary effusion lymphoma. Intractable Rare Dis Res 3:65–74

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rebecca VW, Amaravadi RK (2016) Emerging strategies to effectively target autophagy in cancer. Oncogene 35:1–11

    Article  CAS  PubMed  Google Scholar 

  8. Amaravadi RK, Yu D, Lum JJ et al (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117:326–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kimmelman AC (2011) The dynamic nature of autophagy in cancer. Genes Dev 25:1999–2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kimura T, Takabatake Y, Takahashi A, Isaka Y (2013) Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer Res 73:3–7

    Article  CAS  PubMed  Google Scholar 

  11. Evangelisti C, Evangelisti C, Chiarini F et al (2015) Autophagy in acute leukemias: a double-edged sword with important therapeutic implications. Biochim Biophys Acta 1853:14–26

    Article  CAS  Google Scholar 

  12. Jiang PD, Zhao YL, Deng XQ et al (2010) Antitumor and antimetastatic activities of chloroquine diphosphate in a murine model of breast cancer. Biomed Pharmacother 64:609–614

    Article  CAS  PubMed  Google Scholar 

  13. Sotelo J, Briceno E, Lopez-Gonzalez MA (2006) Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 144:337–343

    Article  CAS  PubMed  Google Scholar 

  14. Cufi S, Vazquez-Martin A, Oliveras-Ferraros C et al (2013) The anti-malarial chloroquine overcomes primary resistance and restores sensitivity to trastuzumab in HER2-positive breast cancer. Sci Rep 3:2469

    PubMed  PubMed Central  Google Scholar 

  15. Jia L, Gopinathan G, Sukumar JT, Gribben JG (2012) Blocking autophagy prevents bortezomib-induced NF-kappaB activation by reducing I-kappaBalpha degradation in lymphoma cells. PLoS One 7:e32584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Enzenmuller S, Gonzalez P, Debatin KM, Fulda S (2013) Chloroquine overcomes resistance of lung carcinoma cells to the dual PI3 K/mTOR inhibitor PI103 by lysosome-mediated apoptosis. Anticancer Drugs 24:14–19

    Article  PubMed  Google Scholar 

  17. Boya P, Gonzalez-Polo RA, Casares N et al (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ding WX, Yin XM (2008) Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome. Autophagy 4:141–150

    Article  CAS  PubMed  Google Scholar 

  19. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

    Article  CAS  PubMed  Google Scholar 

  20. Vaeteewoottacharn K, Kariya R, Matsuda K et al (2013) Perturbation of proteasome function by bortezomib leading to ER stress-induced apoptotic cell death in cholangiocarcinoma. J Cancer Res Clin Oncol 139:1551–1562

    Article  CAS  PubMed  Google Scholar 

  21. Renne R, Zhong W, Herndier B et al (1996) Lytic growth of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 2:342–346

    Article  CAS  PubMed  Google Scholar 

  22. Cesarman E, Moore PS, Rao PH, Inghirami G, Knowles DM, Chang Y (1995) In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi’s sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood 86:2708–2714

    CAS  PubMed  Google Scholar 

  23. Arvanitakis L, Mesri EA, Nador RG et al (1996) Establishment and characterization of a primary effusion (body cavity-based) lymphoma cell line (BC-3) harboring kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstein-Barr virus. Blood 88:2648–2654

    CAS  PubMed  Google Scholar 

  24. Katano H, Hoshino Y, Morishita Y et al (1999) Establishing and characterizing a CD30-positive cell line harboring HHV-8 from a primary effusion lymphoma. J Med Virol 58:394–401

    Article  CAS  PubMed  Google Scholar 

  25. Goto H, Kojima Y, Nagai H, Okada S (2013) Establishment of a CD4-positive cell line from an AIDS-related primary effusion lymphoma. Int J Hematol 97:624–633

    Article  CAS  PubMed  Google Scholar 

  26. Gottschalk AR, Boise LH, Thompson CB, Quintans J (1994) Identification of immunosuppressant-induced apoptosis in a murine B-cell line and its prevention by bcl-x but not bcl-2. Proc Natl Acad Sci U S A 91:7350–7354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shen D, Coleman J, Chan E et al (2011) Novel cell- and tissue-based assays for detecting misfolded and aggregated protein accumulation within aggresomes and inclusion bodies. Cell Biochem Biophys 60:173–185

    Article  CAS  PubMed  Google Scholar 

  28. Kariya R, Matsuda K, Gotoh K, Vaeteewoottacharn K, Hattori S, Okada S (2014) Establishment of nude mice with complete loss of lymphocytes and NK cells and application for in vivo bio-imaging. In Vivo 28:779–784

    CAS  PubMed  Google Scholar 

  29. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51

    Article  CAS  PubMed  Google Scholar 

  30. Sheen JH, Zoncu R, Kim D, Sabatini DM (2011) Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell 19:613–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Caserta TM, Smith AN, Gultice AD, Reedy MA, Brown TL (2003) Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis 8:345–352

    Article  CAS  PubMed  Google Scholar 

  32. Salomon H, Belmonte A, Nguyen K, Gu Z, Gelfand M, Wainberg MA (1994) Comparison of cord blood and peripheral blood mononuclear cells as targets for viral isolation and drug sensitivity studies involving human immunodeficiency virus type 1. J Clin Microbiol 32:2000–2002

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mizushima N, Yamamoto A, Hatano M et al (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jagannathan S, Vad N, Vallabhapurapu S, Anderson KC, Driscoll JJ (2015) MiR-29b replacement inhibits proteasomes and disrupts aggresome + autophagosome formation to enhance the antimyeloma benefit of bortezomib. Leukemia 29:727–738

    Article  CAS  PubMed  Google Scholar 

  35. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoshida H (2007) ER stress and diseases. FEBS J 274:630–658

    Article  CAS  PubMed  Google Scholar 

  37. Harding HP, Calfon M, Urano F, Novoa I, Ron D (2002) Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol 18:575–599

    Article  CAS  PubMed  Google Scholar 

  38. Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13:363–373

    Article  CAS  PubMed  Google Scholar 

  39. Shen J, Prywes R (2005) ER stress signaling by regulated proteolysis of ATF6. Methods 35:382–389

    Article  CAS  PubMed  Google Scholar 

  40. Yoshida H, Okada T, Haze K et al (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20:6755–6767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273:33741–33749

    Article  CAS  PubMed  Google Scholar 

  42. Boyce M, Bryant KF, Jousse C et al (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:935–939

    Article  CAS  PubMed  Google Scholar 

  43. Keller SA, Schattner EJ, Cesarman E (2000) Inhibition of NF-kappaB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood 96:2537–2542

    CAS  PubMed  Google Scholar 

  44. Aoki Y, Feldman GM, Tosato G (2003) Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma. Blood 101:1535–1542

    Article  CAS  PubMed  Google Scholar 

  45. Uddin S, Hussain AR, Al-Hussein KA et al (2005) Inhibition of phosphatidylinositol 3′-kinase/AKT signaling promotes apoptosis of primary effusion lymphoma cells. Clin Cancer Res 11:3102–3108

    Article  CAS  PubMed  Google Scholar 

  46. Banks CN (1987) Melanin: blackguard or red herring? Another look at chloroquine retinopathy. Aust N Z J Ophthalmol 15:365–370

    Article  CAS  PubMed  Google Scholar 

  47. Wallace DJ, Gudsoorkar VS, Weisman MH, Venuturupalli SR (2012) New insights into mechanisms of therapeutic effects of antimalarial agents in SLE. Nat Rev Rheumatol 8:522–533

    Article  CAS  PubMed  Google Scholar 

  48. Egger ME, Huang JS, Yin W, McMasters KM, McNally LR (2013) Inhibition of autophagy with chloroquine is effective in melanoma. J Surg Res 184:274–281

    Article  CAS  PubMed  Google Scholar 

  49. Hoang B, Benavides A, Shi Y, Frost P, Lichtenstein A (2009) Effect of autophagy on multiple myeloma cell viability. Mol Cancer Ther 8:1974–1984

    Article  CAS  PubMed  Google Scholar 

  50. Gostner JM, Schrocksnadel S, Becker K et al (2012) Antimalarial drug chloroquine counteracts activation of indoleamine (2,3)-dioxygenase activity in human PBMC. FEBS Open Bio 2:241–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin JH, Li H, Yasumura D et al (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  CAS  PubMed  Google Scholar 

  53. Chen F, Lu Y, Kuhn DC et al (1997) Calpain contributes to silica-induced I kappa B-alpha degradation and nuclear factor-kappa B activation. Arch Biochem Biophys 342:383–388

    Article  CAS  PubMed  Google Scholar 

  54. Loehberg CR, Strissel PL, Dittrich R et al (2012) Akt and p53 are potential mediators of reduced mammary tumor growth by cloroquine and the mTOR inhibitor RAD001. Biochem Pharmacol 83:480–488

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. I. Suzu and Ms. S. Fujikawa for their technical assistance and Ms. Y. Kanagawa for her secretarial assistance. This work was supported by the Research program on HIV/AIDS (No. 16fk0410108h0001) from the Japan Agency for Medical Research and Development, AMED, and Grants-in-Aid for Science Research (No. 16K08742) from the Ministry of Education, Science, Sports, and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Okada.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exist.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masud Alam, M., Kariya, R., Kawaguchi, A. et al. Inhibition of autophagy by chloroquine induces apoptosis in primary effusion lymphoma in vitro and in vivo through induction of endoplasmic reticulum stress. Apoptosis 21, 1191–1201 (2016). https://doi.org/10.1007/s10495-016-1277-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1277-7

Keywords

Navigation