Skip to main content

Advertisement

Log in

Hemagglutinin protease secreted by V. cholerae induced apoptosis in breast cancer cells by ROS mediated intrinsic pathway and regresses tumor growth in mice model

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Conventional anticancer therapies are effective but have side effects, so alternative targets are being developed. Bacterial toxins that can kill cells or alter the cellular processes like proliferation, apoptosis and differentiation have been reported for cancer treatment. In this study we have shown antitumor activity of hemagglutinin protease (HAP) secreted by Vibrio cholerae. One µg of HAP showed potent antitumor activity when injected into Ehrlich ascites carcinoma (EAC) tumors in Swiss albino mice. Weekly administration of this dose is able to significantly diminish a large tumor volume within 3 weeks and increases the survival rates of cancerous mice. HAP showed apoptotic activity on EAC and other malignant cells. Increased level of pro-apoptotic p53 with increased ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2 signify that HAP induced apoptogenic signals lead to death of the tumor cells. In vivo and ex vivo studies suggest that mitochondrial dependent intrinsic pathway is responsible for this apoptosis. The level of ROS in malignant cells is reported to be higher than the normal healthy cells. HAP induces oxidative stress and increases the level of ROS in malignant cells which is significantly higher than the normal healthy cells. As a result the malignant cells cross the threshold level of ROS for cell survival faster than normal healthy cells. This mechanism causes HAP mediated apoptosis in malignant cells, but normal cells remain unaltered in the same environment. Our study suggests that HAP may be used as a new candidate drug for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci 72:3666–3670

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Kokai KJF, Mcclane BA (1997) Determination of functional regions of Clostridium perfringens enterotoxin through deletion analysis. Clin Infect Dis 25:S165–S167. doi:10.1086/516246

    Article  Google Scholar 

  3. Kokai KJF, Benton K, Wieckowski EU, Mcclane BA (1999) Identification of a Clostridium perfringens enterotoxin region required for large complex formation and cytotoxicity by random mutagenesis. Infect Immun 67:5634–5641

    Google Scholar 

  4. Michl P, Buchholz M, Rolke M, Kunsch S, Löhr M, McClane B et al (2001) Claudin-4: a new target for pancreatic cancer treatment using Clostridium perfringens enterotoxin. Gasrtoenterology 121:678–684. doi:10.1053/gast.2001.27124

    Article  CAS  Google Scholar 

  5. Hough CD, Sherman- Baust CA, Pizer ES, Montz FJ, Im DD, Rosenshein NB (2000) Large scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer. Cancer Res 60:6281–6287

    PubMed  CAS  Google Scholar 

  6. Kominsky SL, Vali M, Korz D, Gabig TG, Weitzman SA, Argani P et al (2004) Clostridium perfringens enterotoxin elicits rapid and specific cytolysis of breast carcinoma cells mediated through tight junction proteins claudin 3 and 4. Am J Pathol 164:1627–1633. doi:10.1016/S0002-9440(10)63721-2

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Nougayrede JP, Taieb F, De Rycke J, Oswald E (2005) Cyclomodulins: bacterial effectors that modulate the eukaryotic cell cycle. Trends Microbiol 13:103–110. doi:10.1016/j.tim.2005.01.002

    Article  PubMed  CAS  Google Scholar 

  8. Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6:764–775. doi:10.1038/nrc1949

    Article  PubMed  CAS  Google Scholar 

  9. Maeda H, Matsumura Y, Molla A (1987) Antitumor activity of some bacterial proteases: eradication of solid tumors in mice by intratumor injection. Cancer Res 47:563–566

    PubMed  CAS  Google Scholar 

  10. Ghosh A, Saha DR, Hoque KM, Asakuna M, Yamasaki S, Koley H et al (2006) Enterotoxigenicity of mature 45-kilodalton and processed 35-kilodalton forms of hemagglutinin protease purified from a cholera toxin gene-negative Vibrio cholerae non-O1, non-O139 strain. Infect Immun 74(5):2937–2946. doi:10.1128/IAI.74.5.2937-2946.2006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Syngkon A, Sridhar Elluri S, Koley H, Rompikuntal PK, Rani Saha DR, Chakrabarti MK et al (2010) Studies on a novel serine protease of a ΔhapaΔprtv vibrio cholerae o1 strain and its role in hemorrhagic response in the rabbit ileal loop model. PLoS One. doi:10.1371/journal.pone.0013122

    PubMed  PubMed Central  Google Scholar 

  12. Nomura F, Akashi S, Sakao Y, Sato S, Kawai T, Matsumoto M et al (2000) Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression. J Immunol 164:3476–3479. doi:10.4049/jimmunol.164.7.3476

    Article  PubMed  CAS  Google Scholar 

  13. Chattopadhyay S, Das T, Sa G, Ray PK (2002) Protein A-activated macrophages induce apoptosis in Ehrlich’s ascites carcinoma through a nitric oxide-dependent pathway. Apoptosis 7:49–57

    Article  PubMed  CAS  Google Scholar 

  14. Bhattacharyya A, Choudhuri T, Pal S, Chattopadhyay S, Datta GK, Sa G et al (2003) Apoptogenic effects of black tea on Ehrlich’s ascites carcinoma cell. Carcinogenesis 24(1):75–80. doi:10.1093/carcin/24.1.75

    Article  PubMed  CAS  Google Scholar 

  15. Roy T, Paul S, Baral RN, Chattopadhyay U, Biswas R (2007) Tumor associated release of interleukin-10 alters the prolactin receptor and down-regulates prolactin responsiveness of immature cortical thymocytes. J Neuroimmunol 186(1–2):112–120. doi:10.1016/j.jneuroim.2007.03.011

    Article  PubMed  CAS  Google Scholar 

  16. McLiman WF, Dairs EV, Glover FL, Rake GW (1957) The submerged culture of mammalian cells. The spinner culture. J Immunol 79:428

    Google Scholar 

  17. Secades P, Guijarro JA (1999) Purification and characterization of an extracellular protease from the fish pathogen Yersinia ruckeri and effect of culture conditions on production. Appl Environ Microbiol 65(9):3969–3975

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Pal S, Choudhuri T, Chattopadhyay S, Bhattacharya A, Datta GK, Das T et al (2001) Mechanisms of curcumin-induced apoptosis of Ehrlich’s ascites carcinoma cells. Biochem Biophys Res Commun 288:658–665. doi:10.1006/bbrc.2001.5823

    Article  PubMed  CAS  Google Scholar 

  19. Das T, Sa G, Chattopadhyay S, Ray PK (2002) Protein A-induced apoptosis of cancer cells is affected by soluble immune mediators. Cancer Immunol Immunother 51:376–380. doi:10.1007/s00262-002-0288-0

    Article  PubMed  CAS  Google Scholar 

  20. Gannon JV, Lane DP (1987) p63 and DNA polymerase a compete for the binding to SV40 T antigen. Nature 329:456–458

    Article  PubMed  CAS  Google Scholar 

  21. D’Armour FE, Blood FR, Belden DA (1965) The manual for laboratory work in mammalian physiology, 3rd edn. The University of Chicago Press, Chicago, pp 4–6

    Google Scholar 

  22. Sharma S, Panjamurthy K, Choudhary B, Srivastava M, Shahabuddin MS, Giri R (2011) A novel DNA intercalator, 8-methoxy pyrimido[4′,5′:4,5]thieno (2,3- b)quinoline-4(3H)-one induces apoptosis in cancer cells, inhibits the tumor progression and enhances lifespan in mice with tumor. Mol Carcinog 52(6):413–425. doi:10.1002/mc.21867

    Article  PubMed  Google Scholar 

  23. Kumagai H, Mukaisho K, Sugihara H, Miwa K, Yamamoto G, Hattori T (2004) Thioproline inhibits development of esophageal adenocarcinoma induced by gastroduodenal reflux in rats. Carcinogenesis 25:723–727. doi:10.1093/carcin/bgh067

    Article  PubMed  CAS  Google Scholar 

  24. Ribble D, Goldstein NB, Norris DA, Shellman YG (2005) A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol 10:5–12. doi:10.1186/1472-6750-5-12

    Google Scholar 

  25. Sannino P, Shousha S (1994) Demonstration of oestrogen receptors in paraffin wax sections of breast carcinoma using the monoclonal antibody 1D5 and microwave oven processing. J Clin Pathol 47:90–92

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Ray T, Maity PC, Banerjee S, Deb S, Dasgupta AK, Sarkar S et al (2010) Vitamin C prevents cigarette smoke induced atherosclerosis in guinea pig model. J Atheroscler Thromb 17(8):817–827. doi:10.5551/jat.2881

    Article  PubMed  CAS  Google Scholar 

  27. Cragg GM, Kingston D, Newman DJ (2005) Anticancer agents from natural products. Brunner-Routledge Psychology Press, London, pp 186–205

    Google Scholar 

  28. Newman DJ, Cragg GM, Snader KM (2003) Natural products as a source of new drugs over the period 1981-2002. J Nat Prod 66:1022–1037. doi:10.1021/np030096l

    Article  PubMed  CAS  Google Scholar 

  29. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, Oers MHV (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    PubMed  CAS  Google Scholar 

  30. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J et al (1997) Prevention of apoptosis by Bcl-2: release of cytochrome C from mitochondria blocked. Science 275:1129–1132. doi:10.1126/science.275.5303.1129

    Article  PubMed  CAS  Google Scholar 

  31. Somasagara RR, Hegde M, Chiruvella KK, Musini A, Choudhary B, Raghavan SC (2012) Extracts of strawberry fruits induce intrinsic pathway of apoptosis in breast cancer cells and inhibits tumor progression in mice. PLoS One 7(10):1–11. doi:10.1371/journal.pone.0047021

    Article  Google Scholar 

  32. Srivastava M, Nambiar M, Sharma S, Karki SS, Goldsmith G, Hegde M et al (2012) An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell 151:1474–1487. doi:10.1016/j.cell.2012.11.054

    Article  PubMed  CAS  Google Scholar 

  33. Klaunig JE, Kamendulis LM, Hocevar BA (2010) Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol 38:96–109. doi:10.1177/0192623309356453

    Article  PubMed  CAS  Google Scholar 

  34. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591. doi:10.1038/nrd2803

    Article  PubMed  CAS  Google Scholar 

  35. Higuchi M, Honda T, Proske RJ, Yeh ET (1998) Regulation of reactive oxygen species-induced apoptosis and necrosis by caspase 3-like proteases. Oncogene 17:2753–2760

    Article  PubMed  CAS  Google Scholar 

  36. Harsdorf RV, Li PF, Dietz R (1999) Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99:2934–2941. doi:10.1161/01.CIR.99.22.2934

    Article  Google Scholar 

  37. Zamzami N, Hirsch T, Dallaporta B, Petit PX, Kroemer G (1997) Mitochondrial implication in accidental and programmed cell death: apoptosis and necrosis. J Bioenerg Biomembr 29:185–193. doi:10.1023/A:1022694131572

    Article  PubMed  CAS  Google Scholar 

  38. Marzo I, Brenner C, Zamzami N, Jurgensmeier JM, Susin SA, Vieira HL et al (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281:2027–2031. doi:10.1126/science.281.5385.2027

    Article  PubMed  CAS  Google Scholar 

  39. Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487. doi:10.1038/20959

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Dr. Rathin Baral (CNCI, India) for providing EAC cells and Dr. Alok Sil (University of Calcutta, India) for using the bright field and fluorescence microscope. We are grateful to the central facility of FACS and the technical support of Mr. Somnath Chatterjee in confocal microscope of NICED, Kolkata. TR is supported by the post doctoral fellowship of Indian Council of Medical Research (ICMR PDF fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Pal.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, T., Chakrabarti, M.K. & Pal, A. Hemagglutinin protease secreted by V. cholerae induced apoptosis in breast cancer cells by ROS mediated intrinsic pathway and regresses tumor growth in mice model. Apoptosis 21, 143–154 (2016). https://doi.org/10.1007/s10495-015-1194-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1194-1

Keywords

Navigation