Skip to main content
Log in

Serum-dependent processing of late apoptotic cells and their immunogenicity

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The execution phase of apoptosis involves many processes which modify cellular molecules for an efficient and quiet elimination of the dead cell. These include exposure and secretion of “eat-me” signals, to attract phagocytes, as well as degradation of immune-stimulating cell debris. During this phase apoptotic microparticles (MPs) are released from the dying cell. The remaining cell remnant forms large late apoptotic cell-derived membranous vesicles (ACMVL) on its surface which remain attached. Phagocytosis is enhanced by cell non-autonomous factors such as complement component C1q and serum DNase I. We studied the formation and retraction of ACMVL and the influence of serum on their dynamics. We furthermore investigated the immunogenicity of cell remnants compared to released MPs. ACMVL were examined using time-lapse, electron microscopy and confocal microscopy. These blebs were observed on cell remnants with intact and with permeable membrane. This suggests that ACMVL remain on the surface by the time the cell remnant enters secondary necrosis. Bleb retraction could also be observed, but was radically enhanced in the presence of serum. Additionally, MPs stimulate peripheral blood mononuclear cells to produce similar IL-1beta, IL-6, IL-8, IL-10, and TNF-alpha levels as LPS. In contrast, cell remnants only induce high levels of IL-8. These data show that cell non-autonomous factors contribute to morphological rearrangements during late apoptosis. In addition, they implicate that apoptotic MPs are released to attract phagocytes, while apoptotic cell remnants further process their potentially immunogenic content to prevent an inflammatory response upon secondary necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Falschlehner C, Emmerich CH, Gerlach B, Walczak H (2007) TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol 39:1462–1475. doi:10.1016/j.biocel.2007.02.007

    Article  CAS  PubMed  Google Scholar 

  3. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. doi:10.1080/01926230701320337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Mills JC, Stone NL, Pittman RN (1999) Extranuclear apoptosis. The role of the cytoplasm in the execution phase. J Cell Biol 146:703–708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Coleman ML, Sahai EA, Yeo M et al (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 3:339–345. doi:10.1038/3507000935070009

    Article  CAS  PubMed  Google Scholar 

  6. Lane JD, Lucocq J, Pryde J et al (2002) Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J Cell Biol 156:495–509. doi:10.1083/jcb.200110007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Cheng JPX, Lane JD (2010) Organelle dynamics and membrane trafficking in apoptosis and autophagy. Histol Histopathol 25:1457–1472

    PubMed  Google Scholar 

  8. Ardoin SP, Shanahan JC, Pisetsky DS (2007) The role of microparticles in inflammation and thrombosis. Scand J Immunol 66:159–165. doi:10.1111/j.1365-3083.2007.01984.x

    Article  CAS  PubMed  Google Scholar 

  9. Schiller M, Parcina M, Heyder P et al (2012) Induction of type I IFN is a physiological immune reaction to apoptotic cell-derived membrane microparticles. J Immunol 189:1747–1756. doi:10.4049/jimmunol.1100631

    Article  CAS  PubMed  Google Scholar 

  10. Zirngibl M, Fürnrohr BG, Janko C et al (2015) Loading of nuclear autoantigens prototypically recognized by systemic lupus erythematosus sera into late apoptotic vesicles requires intact microtubules and myosin light chain kinase activity. Clin Exp Immunol 179:39–49. doi:10.1111/cei.12342

    Article  CAS  PubMed  Google Scholar 

  11. Wickman G, Julian L, Olson MF (2012) How apoptotic cells aid in the removal of their own cold dead bodies. Cell Death Differ 19:735–742. doi:10.1038/cdd.2012.25cdd201225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wickman GR, Julian L, Mardilovich K et al (2013) Blebs produced by actin-myosin contraction during apoptosis release damage-associated molecular pattern proteins before secondary necrosis occurs. Cell Death Differ 20:1293–1305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Collins JA, Schandi CA, Young KK et al (1997) Major DNA fragmentation is a late event in apoptosis. J Histochem Cytochem 45:923–934

    Article  CAS  PubMed  Google Scholar 

  14. Barros LF, Hermosilla T, Castro J (2001) Necrotic volume increase and the early physiology of necrosis. Comp Biochem Physiol A 130:401–409

    Article  CAS  Google Scholar 

  15. Fransen JH, Hilbrands LB, Jacobs CW et al (2009) Both early and late apoptotic blebs are taken up by DC and induce IL-6 production. Autoimmunity 42:325–327. doi:10.1080/08916930902828049

    Article  CAS  PubMed  Google Scholar 

  16. Lane JD, Allan VJ, Woodman PG (2005) Active relocation of chromatin and endoplasmic reticulum into blebs in late apoptotic cells. J Cell Sci 118:4059–4071. doi:10.1242/jcs.02529

    Article  CAS  PubMed  Google Scholar 

  17. Croft DR, Coleman ML, Li S et al (2005) Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. J Cell Biol 168:245–255. doi:10.1083/jcb.200409049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Sebbagh M, Renvoize C, Hamelin J et al (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3:346–352. doi:10.1038/3507001935070019

    Article  CAS  PubMed  Google Scholar 

  19. Barros LF, Kanaseki T, Sabirov R et al (2003) Apoptotic and necrotic blebs in epithelial cells display similar neck diameters but different kinase dependency. Cell Death Differ 10:687–697. doi:10.1038/sj.cdd.44012364401236

    Article  CAS  PubMed  Google Scholar 

  20. Bovellan M, Fritzsche M, Stevens C, Charras G (2010) Death-associated protein kinase (DAPK) and signal transduction: blebbing in programmed cell death. FEBS J 277:58–65. doi:10.1111/j.1742-4658.2009.07412.x

    Article  CAS  PubMed  Google Scholar 

  21. Goh YC, Yap CT, Huang BH et al (2011) Heat-shock protein 60 translocates to the surface of apoptotic cells and differentiated megakaryocytes and stimulates phagocytosis. Cell Mol Life Sci 68:1581–1592. doi:10.1007/s00018-010-0534-0

    Article  CAS  PubMed  Google Scholar 

  22. Schiller M, Bekeredjian-Ding I, Heyder P et al (2008) Autoantigens are translocated into small apoptotic bodies during early stages of apoptosis. Cell Death Differ 15:183–191. doi:10.1038/sj.cdd.4402239

    Article  CAS  PubMed  Google Scholar 

  23. Peter C, Wesselborg S, Herrmann M, Lauber K (2010) Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis 15:1007–1028. doi:10.1007/s10495-010-0472-1

    Article  PubMed  Google Scholar 

  24. Barteneva NS, Fasler-Kan E, Bernimoulin M et al (2013) Circulating microparticles: square the circle. BMC Cell Biol 14:23. doi:10.1186/1471-2121-14-231471-2121-14-23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Bilyy RO, Shkandina T, Tomin A et al (2012) Macrophages discriminate glycosylation patterns of apoptotic cell-derived microparticles. J Biol Chem 287:496–503. doi:10.1074/jbc.M111.273144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Navratil JS, Watkins SC, Wisnieski JJ, Ahearn JM (2001) The globular heads of C1q specifically recognize surface blebs of apoptotic vascular endothelial cells. J Immunol 166:3231–3239

    Article  CAS  PubMed  Google Scholar 

  27. Nauta AJ, Daha MR, van Kooten C, Roos A (2003) Recognition and clearance of apoptotic cells: a role for complement and pentraxins. Trends Immunol 24:148–154

    Article  CAS  PubMed  Google Scholar 

  28. Nauta AJ, Trouw LA, Daha MR et al (2002) Direct binding of C1q to apoptotic cells and cell blebs induces complement activation. Eur J Immunol 32:1726–1736

    Article  CAS  PubMed  Google Scholar 

  29. Fraser DA, Pisalyaput K, Tenner AJ (2010) C1q enhances microglial clearance of apoptotic neurons and neuronal blebs, and modulates subsequent inflammatory cytokine production. J Neurochem 112:733–743. doi:10.1111/j.1471-4159.2009.06494.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Dye JR, Ullal AJ, Pisetsky DS (2013) The role of microparticles in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus. Scand J Immunol 78:140–148

    Article  CAS  PubMed  Google Scholar 

  31. Nielsen CT (2012) Circulating microparticles in systemic lupus erythematosus. Dan Med J 59(11):B4548

    PubMed  Google Scholar 

  32. Ullal AJ, Reich CF, Clowse M et al (2011) Microparticles as antigenic targets of antibodies to DNA and nucleosomes in systemic lupus erythematosus. J Autoimmun 36:173–180

    Article  CAS  PubMed  Google Scholar 

  33. Kinchen JM, Ravichandran KS (2008) Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol 9:781–795. doi:10.1038/nrm2515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Kinchen JM, Doukoumetzidis K, Almendinger J et al (2008) A pathway for phagosome maturation during engulfment of apoptotic cells. Nat Cell Biol 10:556–566. doi:10.1038/ncb1718

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Gaipl US, Kuenkele S, Voll RE et al (2001) Complement binding is an early feature of necrotic and a rather late event during apoptotic cell death. Cell Death Differ 8:327–334. doi:10.1038/sj.cdd.4400826

    Article  CAS  PubMed  Google Scholar 

  36. Gaipl US, Beyer TD, Heyder P et al (2004) Cooperation between C1q and DNase I in the clearance of necrotic cell-derived chromatin. Arthritis Rheum 50:640–649. doi:10.1002/art.20034

    Article  CAS  PubMed  Google Scholar 

  37. Liang YY, Arnold T, Michlmayr A et al (2014) Serum-dependent processing of late apoptotic cells for enhanced efferocytosis. Cell Death Dis 5:e1264. doi:10.1038/cddis.2014.210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Herrmann M, Voll RE, Zoller OM et al (1998) Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 41:1241–1250

    Article  CAS  PubMed  Google Scholar 

  39. Skiljevic D, Jeremic I, Nikolic M et al (2013) Serum DNase i activity in systemic lupus erythematosus: correlation with immunoserological markers, the disease activity and organ involvement. Clin Chem Lab Med 51:1083–1091

    Article  CAS  PubMed  Google Scholar 

  40. Prince WS, Baker DL, Dodge AH et al (1998) Pharmacodynamics of recombinant human DNase I in serum. Clin Exp Immunol 113:289–296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Leffler J, Martin M, Gullstrand B et al (2012) Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol 188:3522–3531. doi:10.4049/jimmunol.1102404

    Article  CAS  PubMed  Google Scholar 

  42. Leffler J, Bengtsson AA, Blom AM (2014) The complement system in systemic lupus erythematosus: an update. Ann Rheum Dis 73(9):1601

    Article  CAS  PubMed  Google Scholar 

  43. Charras GT, Coughlin M, Mitchison TJ, Mahadevan L (2008) Life and times of a cellular bleb. Biophys J 94:1836–1853. doi:10.1529/biophysj.107.113605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Zeerleder S, Zwart B, te Velthuis H et al (2007) A plasma nucleosome releasing factor (NRF) with serine protease activity is instrumental in removal of nucleosomes from secondary necrotic cells. FEBS Lett 581:5382–5388. doi:10.1016/j.febslet.2007.10.037

    Article  CAS  PubMed  Google Scholar 

  45. Zeerleder S, Zwart B, te Velthuis H et al (2008) Nucleosome-releasing factor: a new role for factor VII-activating protease (FSAP). FASEB J 22:4077–4084. doi:10.1096/fj.08-110429fj.08-110429

    Article  CAS  PubMed  Google Scholar 

  46. Stephan F, Hazelzet JA, Bulder I et al (2011) Activation of factor VII-activating protease in human inflammation: a sensor for cell death. Crit Care 15:R110. doi:10.1186/cc10131cc10131

    Article  PubMed Central  PubMed  Google Scholar 

  47. Stephan F, Marsman G, Bakker LM et al (2014) Cooperation of factor VII-activating protease and serum DNase I in the release of nucleosomes from necrotic cells. Arthritis Rheumatol 66:686–693. doi:10.1002/Art.38265

    Article  CAS  PubMed  Google Scholar 

  48. Martin SJ, Henry CM, Cullen SP (2012) A perspective on mammalian caspases as positive and negative regulators of inflammation. Mol Cell 46:387–397. doi:10.1016/j.molcel.2012.04.026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Katharina Strasser, Hanna Birnleitner and Monika Sachet, for helpful discussions and proof reading of the manuscript. In addition we thank Andreas Spittler, Sabine Rauscher, Marion Gröger and Elisabeth Buchberger for their support in cell sorting and confocal microscopy. This study was partially supported by a Grant from the Comprehensive Cancer Center of the Medical University of Vienna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Oehler.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y.Y., Rainprecht, D., Eichmair, E. et al. Serum-dependent processing of late apoptotic cells and their immunogenicity. Apoptosis 20, 1444–1456 (2015). https://doi.org/10.1007/s10495-015-1163-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1163-8

Keywords

Navigation