Skip to main content
Log in

Functional, morphological, and apoptotic alterations in skeletal muscle of ARC deficient mice

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptotic signaling plays an important role in the development and maintenance of healthy skeletal muscle. However, dysregulation of apoptotic signals in skeletal muscle is associated with atrophy and loss of function. Apoptosis repressor with caspase recruitment domain (ARC) is a potent anti-apoptotic protein that is highly expressed in skeletal muscle; however, its role in this tissue has yet to be elucidated. To investigate whether ARC deficiency has morphological, functional, and apoptotic consequences, skeletal muscle from 18 week-old wild-type and ARC knockout (KO) mice was studied. In red muscle (soleus), we found lower maximum tetanic force, as well as a shift towards a greater proportion of type II fibers in ARC KO mice. Furthermore, the soleus of ARC KO mice exhibited lower total, as well as fiber type-specific cross sectional area in type I and IIA fibers. Interestingly, these changes in ARC KO mice corresponded with increased DNA fragmentation, albeit independent of caspase or calpain activation. However, cytosolic fractions of red muscle from ARC KO mice had higher apoptosis inducing factor content, suggesting increased mitochondrial-mediated, caspase-independent apoptotic signaling. This was confirmed in isolated mitochondrial preparations, as mitochondria from skeletal muscle of ARC KO mice were more susceptible to calcium stress. Interestingly, white muscle from ARC KO mice showed no signs of altered apoptotic signaling or detrimental morphological differences. Results from this study suggest that even under basal conditions ARC influences muscle apoptotic signaling, phenotype, and function, particularly in slow and/or oxidative muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

½RT:

Half relaxation time

AIF:

Apoptosis inducing factor

ANT:

Adenine nucleotide translocator

ARC:

Apoptosis repressor with caspase recruitment domain

AU:

Arbitrary units

Bax:

Bcl-2 associated X protein

Bcl-2:

B cell lymphoma 2

CLAMS:

Comprehensive Lab Animal Monitoring System

CSA:

Cross sectional area

CuZnSOD:

Copper zinc superoxide dismutase

Cyto C:

Cytochrome C

EndoG:

Endonuclease G

ER:

Endoplasmic reticulum

FLIP:

FLICE-like inhibitory protein

GPD:

α-Glycerophosphate dehydrogenase

HET:

Heterozygous

HMW:

High molecular weight

Hsp70:

Heat shock protein 70

KO:

Knockout

LC3B:

Microtubule-associated protein 1 light chain 3 beta

MAFbx:

Muscle atrophy F-box

MOMP:

Mitochondrial outer membrane permeabilization

MuRF1:

Muscle RING-finger protein-1

p62:

p62/sequestosome 1

PFK:

Phosphofructokinase

PTP:

Permeability transition pore

R123:

Rhodamine 123

RQ:

Red quadriceps

SDH:

Succinate dehydrogenase

Smac:

Second mitochondria-derived activator of caspase

TPT:

Time to peak tension

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick end labeling

UPS:

Ubiquitin proteasome system

\({\dot{\hbox{V}}}{\hbox{O}}_2\) :

Oxygen consumption

WQ:

White quadriceps

WT:

Wild-type

XIAP:

X-linked inhibitor of apoptosis

References

  1. Abmayr S, Crawford RW, Chamberlain JS (2004) Characterization of ARC, apoptosis repressor interacting with CARD, in normal and dystrophin-deficient skeletal muscle. Hum Mol Genet 13:213–221

    Article  CAS  PubMed  Google Scholar 

  2. Allen DL, Roy RR, Reggie Edgerton V (1999) Myonuclear domains in muscle adaptation and disease. Muscle Nerve 22:1350–1360

    Article  CAS  PubMed  Google Scholar 

  3. Bartoli M, Richard I (2005) Calpains in muscle wasting. Int J Biochem Cell B 37:2115–2133

    Article  CAS  Google Scholar 

  4. Bloemberg D, Quadrilatero J (2014) Mitochondrial pro-apoptotic indices do not precede the transient caspase activation associated with myogenesis. BBA-Mol Cell Res 1843:2926–2936

    CAS  Google Scholar 

  5. Bloemberg D, Quadrilatero J (2012) Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS One 7(4):35273

    Article  Google Scholar 

  6. Burniston JG, Chester N, Clark WA, Tan L, Goldspink DF (2005) Dose-dependent apoptotic and necrotic myocyte death induced by the β2-adrenergic receptor agonist, clenbuterol. Muscle Nerve 32:767–774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Burniston JG, Saini A, Tan L, Goldspink DF (2005) Angiotensin II induces apoptosis in vivo in skeletal, as well as cardiac, muscle of the rat. Exp Physiol 90:755–761

    Article  CAS  PubMed  Google Scholar 

  8. Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA (2008) Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 7:2–12

    Article  CAS  PubMed  Google Scholar 

  9. Chi MM, Hintz CS, Coyle EF, Martin WH 3rd, Ivy JL, Nemeth PM, Holloszy JO, Lowry OH (1983) Effects of detraining on enzymes of energy metabolism in individual human muscle fibers. Am J Physiol 244:C276–C287

    CAS  PubMed  Google Scholar 

  10. Dam AD, Mitchell AS, Rush JWE, Quadrilatero J (2012) Elevated skeletal muscle apoptotic signaling following glutathione depletion. Apoptosis 17:48–60

    Article  CAS  PubMed  Google Scholar 

  11. Davis J, Kwong JQ, Kitsis RN, Molkentin JD (2013) Apoptosis repressor with a CARD domain (ARC) restrains Bax-mediated pathogenesis in dystrophic skeletal muscle. PLoS One 8(12):e82053

    Article  PubMed Central  PubMed  Google Scholar 

  12. Degens H, Swisher AK, Heijdra YF, Siu PM, Dekhuijzen PNR, Alway SE (2007) Apoptosis and Id2 expression in diaphragm and soleus muscle from the emphysematous hamster. Am J Physiol Reg Integr Comp Physiol 293:R135–R144

    Article  CAS  Google Scholar 

  13. Donath S, Li P, Willenbockel C, Al-Saadi N, Gross V, Willnow T, Bader M, Martin U, Bauersachs J, Wollert KC, Dietz R, Von Harsdorf R (2006) Apoptosis repressor with caspase recruitment domain is required for cardioprotection in response to biomechanical and ischemic stress. Circulation 113:1203–1212

    Article  CAS  PubMed  Google Scholar 

  14. Dowds TA, Sabban EL (2001) Endogenous and exogenous ARC in serum withdrawal mediated PC12 cell apoptosis: a new pro-apoptotic role for ARC. Cell Death Differ 8:640–648

    Article  CAS  PubMed  Google Scholar 

  15. Dupont-Versteegden EE, Strotman BA, Gurley CM, Gaddy D, Knox M, Fluckey JD, Peterson CA (2006) Nuclear translocation of EndoG at the initiation of disuse muscle atrophy and apoptosis is specific to myonuclei. Am J Physiol Reg Integr Comp Physiol 291:R1730–R1740

    Article  CAS  Google Scholar 

  16. Ekhterae D, Lin Z, Lundberg MS, Crow MT, Brosius FC 3rd, Núñez G (1999) ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ Res 85:e70–e77

    Article  CAS  PubMed  Google Scholar 

  17. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    Article  CAS  PubMed  Google Scholar 

  18. Fernando P, Kelly JF, Balazsi K, Slack RS, Megeney LA (2002) Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci USA 99:11025–11030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Foo RS, Nam Y, Ostreicher MJ, Metzl MD, Whelan RS, Peng C, Ashton AW, Fu W, Mani K, Chin S, Provenzano E, Ellis I, Figg N, Pinder S, Bennett MR, Caldas C, Kitsis RN (2007) Regulation of p53 tetramerization and nuclear export by ARC. Proc Natl Acad Sci USA 104:20826–20831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Gundersen K, Bruusgaard JC (2008) Nuclear domains during muscle atrophy: nuclei lost or paradigm lost? J Physiol (Lond) 586:2675–2681

    Article  CAS  Google Scholar 

  21. Gustafsson ÅB, Tsai JG, Logue SE, Crow MT, Gottlieb RA (2004) Apoptosis repressor with caspase recruitment domain protects against cell death by interfering with Bax activation. J Biol Chem 279:21233–21238

    Article  CAS  PubMed  Google Scholar 

  22. Hao Y, Jackson JR, Wang Y, Edens N, Pereira SL, Alway SE (2011) ß-Hydroxy-ß-methylbutyrate reduces myonuclear apoptosis during recovery from hind limb suspension-induced muscle fiber atrophy in aged rats. Am J Physiol Reg Integr Comp Physiol 301:R701–R715

    Article  CAS  Google Scholar 

  23. Heikaus S, Kempf T, Mahotka C, Gabbert HE, Ramp U (2008) Caspase-8 and its inhibitors in RCCs in vivo: the prominent role of ARC. Apoptosis 13:938–949

    Article  CAS  PubMed  Google Scholar 

  24. Hennig R, Lomo T (1985) Firing patterns of motor units in normal rats. Nature 314:164–166

    Article  CAS  PubMed  Google Scholar 

  25. Henriksson J, Chi MM, Hintz CS, Young DA, Kaiser KK, Salmons S, Lowry OH (1986) Chronic stimulation of mammalian muscle: changes in enzymes of six metabolic pathways. Am J Physiol 251:C614–C632

    CAS  PubMed  Google Scholar 

  26. Hiona A, Sanz A, Kujoth GC, Pamplona R, Seo AY, Hofer T, Someya S, Miyakawa T, Nakayama C, Samhan-Arias AK, Servais S, Barger JL, Portero-Otín M, Tanokura M, Prolla TA, Leeuwenburgh C (2010) Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice. PLoS One 5(7):311468

    Article  Google Scholar 

  27. Hunter AL, Zhang J, Chen SC, Si X, Wong B, Ekhterae D, Luo H, Granville DJ (2007) Apoptosis repressor with caspase recruitment domain (ARC) inhibits myogenic differentiation. FEBS Lett 581:879–884

    Article  CAS  PubMed  Google Scholar 

  28. Jo DG, Jun JI, Chang JW, Hong YM, Song SM, Cho DH, Shim SM, Lee HJ, Cho CH, Kim DH, Jung YK (2004) Calcium binding of ARC mediates regulation of caspase 8 and cell death. Mol Cell Biol 24:9763–9770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Koseki T, Inohara N, Chen S, Núñez G (1998) ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci USA 95:5156–5160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  31. Li HC, Chen CJ, Watts R, Thorne RF, Kiejda KA, Xu DZ, Hersey P (2008) Inhibition of endoplasmic reticulum stress-induced apoptosis of melanoma cells by the ARC protein. Cancer Res 68:834–842

    Article  Google Scholar 

  32. Li P, Li J, Müller E, Otto A, Dietz R, Von Harsdorf R (2002) Phosphorylation by protein kinase CK2: a signaling switch for the caspase-inhibiting protein ARC. Mol Cell 10:247–258

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Lu D, Tan W, Wang J, Li P (2008) p53 initiates apoptosis by transcriptionally targeting the antiapoptotic protein ARC. Mol Cell Biol 28:564–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Marzetti E, Wohlgemuth SE, Lees HA, Chung H, Giovannini S, Leeuwenburgh C (2008) Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle. Mech Ageing Dev 129:542–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. McMillan EM, Quadrilatero J (2011) Differential apoptosis-related protein expression, mitochondrial properties, proteolytic enzyme activity, and DNA fragmentation between skeletal muscles. Am J Physiol-Reg I 300:R531–R543

    CAS  Google Scholar 

  36. Murray TVA, McMahon JM, Howley BA, Stanley A, Ritter T, Mohr A, Zwacka R, Fearnhead HO (2008) A non-apoptotic role for caspase-9 in muscle differentiation. J Cell Sci 121:3786–3793

    Article  CAS  PubMed  Google Scholar 

  37. Nakanishi K, Dohmae N, Morishima N (2007) Endoplasmic reticulum stress increases myofiber formation in vitro. FASEB J 21:2994–3003

    Article  PubMed  Google Scholar 

  38. Nakanishi K, Sudo T, Morishima N (2005) Endoplasmic reticulum stress signaling transmitted by ATF6 mediates apoptosis during muscle development. J Cell Biol 169:555–560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Nam Y, Mani K, Ashton AW, Peng C, Krishnamurthy B, Hayakawa Y, Lee P, Korsmeyer SJ, Kitsis RN (2004) Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol Cell 15:901–912

    Article  CAS  PubMed  Google Scholar 

  40. Neuss M, Monticone R, Lundberg MS, Chesley AT, Fleck E, Crow MT (2001) The apoptotic regulatory protein ARC (apoptosis repressor with caspase recruitment domain) prevents oxidant stress-mediated cell death by preserving mitochondrial function. J Biol Chem 276:33915–33922

    Article  CAS  PubMed  Google Scholar 

  41. O’Connor JE, Vargas JL, Kimler BF, Hernandez-Yago J, Grisolia S (1988) Use of Rhodamine 123 to investigate alterations in mitochondrial activity in isolated mouse liver mitochondria. Biochem Biophys Res Commun 151:568–573

    Article  PubMed  Google Scholar 

  42. Quadrilatero J, Alway SE, Dupont-Versteegden E (2011) Skeletal muscle apoptotic response to physical activity: potential mechanisms for protection. Appl Physiol Nutr Metab 36:608–617

    Article  CAS  PubMed  Google Scholar 

  43. Rasheva VI, Domingos PM (2009) Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 14:996–1007

    Article  PubMed  Google Scholar 

  44. Sakamoto K, Goodyear LJ (2002) Invited review: intracellular signaling in contracting skeletal muscle. J Appl Physiol 93:369–383

    CAS  PubMed  Google Scholar 

  45. Sakellariou GK, Vasilaki A, Palomero J, Kayani A, Zibrik L, McArdle A, Jackson MJ (2013) Studies of mitochondrial and nonmitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase(s) in the increased skeletal muscle superoxide generation that occurs during contractile activity. Antioxid Redox Sign 18:603–621

    Article  CAS  Google Scholar 

  46. Samejima K, Tone S, Earnshaw WC (2001) CAD/DFF40 nuclease is dispensable for high molecular weight DNA cleavage and stage I chromatin condensation in apoptosis. J Biol Chem 276:45427–45432

    Article  CAS  PubMed  Google Scholar 

  47. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91:1447–1531

    Article  CAS  PubMed  Google Scholar 

  48. Shaltouki A, Freer M, Mei Y, Weyman CM (2007) Increased expression of the pro-apoptotic Bcl2 family member PUMA is required for mitochondrial release of cytochrome C and the apoptosis associated with skeletal myoblast differentiation. Apoptosis 12:2143–2154

    Article  CAS  PubMed  Google Scholar 

  49. Sishi BJN, Engelbrecht A- (2011) Tumor necrosis factor alpha (TNF-a) inactivates the PI3-kinase/PKB pathway and induces atrophy and apoptosis in L6 myotubes. Cytokine 54:173–184

    Article  CAS  PubMed  Google Scholar 

  50. Siu PM, Alway SE (2009) Response and adaptation of skeletal muscle to denervation stress: the role of apoptosis in muscle loss. Front Biosci 14:432–452

    Article  CAS  Google Scholar 

  51. Siu PM, Alway SE (2005) Mitochondria-associated apoptotic signalling in denervated rat skeletal muscle. J Physiol (Lond) 565:309–323

    Article  PubMed Central  CAS  Google Scholar 

  52. Stratos I, Li Z, Rotter R, Herlyn P, Mittlmeier T, Vollmar B (2012) Inhibition of caspase mediated apoptosis restores muscle function after crush injury in rat skeletal muscle. Apoptosis 17:269–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Supinski GS, Wang W, Callahan LA (2009) Caspase and calpain activation both contribute to sepsis-induced diaphragmatic weakness. J Appl Physiol 107:1389–1396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Supinski GS, Callahan LA (2006) Caspase activation contributes to endotoxin-induced diaphragm weakness. J Appl Physiol 100:1770–1777

    Article  CAS  PubMed  Google Scholar 

  55. Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, Costantini P, Ferri KF, Irinopoulou T, Prévost M, Brothers G, Mak TW, Penninger J, Earnshaw WC, Kroemer G (2000) Two distinct pathways leading to nuclear apoptosis. J Exp Med 192:571–579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Suzuki H, Poole DC, Zweifach BW, Schmid-Schonbein GW (1995) Temporal correlation between maximum tetanic force and cell death in postischemic rat skeletal muscle. J Clin Invest 96:2892–2897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Tan W, Wang J, Lin Z, Li Y, Lin Y, Li P (2008) Novel cardiac apoptotic pathway the dephosphorylation of apoptosis repressor with caspase recruitment domain by calcineurin. Circulation 118:2268–2276

    Article  CAS  PubMed  Google Scholar 

  58. van der Meer SFT, Jaspers RT, Degens H (2011) Is the myonuclear domain size fixed? J Musculoskelet Neuronal Interact 11:286–297

    PubMed  Google Scholar 

  59. Wang M, Qanungo S, Crow MT, Watanabe M, Nieminen A- (2005) Apoptosis repressor with caspase recruitment domain (ARC) is expressed in cancer cells and localizes to nuclei. FEBS Lett 579:2411–2415

    Article  CAS  PubMed  Google Scholar 

  60. Xiao R, Ferry AL, Dupont-Versteegden EE (2011) Cell death-resistance of differentiated myotubes is associated with enhanced anti-apoptotic mechanisms compared to myoblasts. Apoptosis 16:221–234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Yi CH, Yuan J (2009) The Jekyll and Hyde functions of caspases. Dev Cell 16:21–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by funds provided to Joe Quadrilatero by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Institutes of Health Research (CIHR). The authors declare no competing financial interests.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe Quadrilatero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitchell, A.S., Smith, I.C., Gamu, D. et al. Functional, morphological, and apoptotic alterations in skeletal muscle of ARC deficient mice. Apoptosis 20, 310–326 (2015). https://doi.org/10.1007/s10495-014-1078-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1078-9

Keywords

Navigation