Skip to main content

Advertisement

Log in

Caspase-8 and its inhibitors in RCCs in vivo: the prominent role of ARC

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Activation of the initiator-caspase, caspase-8 is under tight control of multiple antiapoptotic regulators including ARC, cFlipS, cFlipL and PED/PEA-15. Since there is little data regarding the expression of caspase-8 and its antiapoptotic regulators in human tumours in vivo, we analysed their expression in renal cell carcinomas (RCCs) to identify which of these genes might be crucial for the well known impaired apoptosis and—as a result—resistance towards chemotherapy and ionizing radiation of RCCs. Caspase-8, cFlipS, cFlipL and PED/PEA-15 mRNA expression was significantly increased only in early stages of RCCs compared to non-neoplastic renal tissue. In contrast, ARC mRNA expression was significantly increased in RCCs of all stages without differences between the tumour stages and grades. Importantly, the relative mRNA expression ratio between ARC and caspase-8 was significantly increased during carcinogenesis and tumour progression. In contrast, the relative mRNA expression ratio between cFlipS, cFlipL or PED/PEA-15 and caspase-8 remained constant during all tumour stages. In conclusion, our analysis revealed that ARC is the only caspase-8 inhibiting regulator being constantly overexpressed in RCCs. Furthermore, the balance between antiapoptotic ARC and proapoptotic caspase-8 is the only one to be disturbed during carcinogenesis and tumour progression of RCCs. This inhibition of Caspase-8 might therefore be one example for the multiple antiapoptotic functions of ARC in RCCs possibly contributing to the marked resistance of RCCs towards radio- and chemotherapy and reflects a shift of gene expression towards a more antiapoptotic context in RCCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gerharz CD, Ramp U, Dejosez M et al (1999) Resistance to CD95 (APO-1/Fas)-mediated apoptosis in human renal cell carcinomas: an important factor for evasion from negative growth control. Lab Invest 79:1521–1534

    PubMed  CAS  Google Scholar 

  2. Ramp U, Dejosez M, Mahotka C et al (2000) Deficient activation of CD95 (APO-1/Fas)-mediated apoptosis: a potential factor of multidrug resistance in human renal cell carcinoma. Br J Cancer 82:1851–1859. doi:10.1054/bjoc.2000.1155

    Article  PubMed  CAS  Google Scholar 

  3. Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22:8628–8633. doi:10.1038/sj.onc.1207232

    Article  PubMed  CAS  Google Scholar 

  4. Wu GS, Burns TF, McDonald ER 3rd et al (1997) KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 17:141–143. doi:10.1038/ng1097–141

    Article  PubMed  CAS  Google Scholar 

  5. Owen-Schaub LB, Zhang W, Cusack JC et al (1995) Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 15:3032–3040

    PubMed  CAS  Google Scholar 

  6. Vakifahmetoglu H, Olsson M, Orrenius S, Zhivotovsky B (2006) Functional connection between p53 and caspase-2 is essential for apoptosis induced by DNA damage. Oncogene 25:5683–5692. doi:10.1038/sj.onc.1209569

    Article  PubMed  CAS  Google Scholar 

  7. Lin CF, Chen CL, Chang WT et al (2004) Sequential caspase-2 and caspase-8 activation upstream of mitochondria during ceramide and etoposide-induced apoptosis. J Biol Chem 279:40755–40761. doi:10.1074/jbc.M404726200

    Article  PubMed  CAS  Google Scholar 

  8. Koseki T, Inohara N, Chen S, Nunez G (1998) ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci USA 95:5156–5160. doi:10.1073/pnas.95.9.5156

    Article  PubMed  CAS  Google Scholar 

  9. Ekhterae D, Lin Z, Lundberg MS, Crow MT, Brosius FC 3rd, Nunez G (1999) ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ Res 85:e70–e77

    PubMed  CAS  Google Scholar 

  10. Abmayr S, Crawford RW, Chamberlain JS (2004) Characterization of ARC, apoptosis repressor interacting with CARD, in normal and dystrophin-deficient skeletal muscle. Hum Mol Genet 13:213–221. doi:10.1093/hmg/ddh018

    Article  PubMed  CAS  Google Scholar 

  11. Wang M, Qanungo S, Crow MT, Watanabe M, Nieminen AL (2005) Apoptosis repressor with caspase recruitment domain (ARC) is expressed in cancer cells and localizes to nuclei. FEBS Lett 579:2411–2415. doi:10.1016/j.febslet.2005.03.040

    Article  PubMed  CAS  Google Scholar 

  12. Neuss M, Monticone R, Lundberg MS, Chesley AT, Fleck E, Crow MT (2001) The apoptotic regulatory protein ARC (apoptosis repressor with caspase recruitment domain) prevents oxidant stress-mediated cell death by preserving mitochondrial function. J Biol Chem 276:33915–33922. doi:10.1074/jbc.M104080200

    Article  PubMed  CAS  Google Scholar 

  13. Gustafsson AB, Tsai JG, Logue SE, Crow MT, Gottlieb RA (2004) Apoptosis repressor with caspase recruitment domain protects against cell death by interfering with Bax activation. J Biol Chem 279:21233–21238. doi:10.1074/jbc.M400695200

    Article  PubMed  CAS  Google Scholar 

  14. Nam YJ, Mani K, Ashton AW et al (2004) Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol Cell 15:901–912. doi:10.1016/j.molcel.2004.08.020

    Article  PubMed  CAS  Google Scholar 

  15. Foo RS, Nam YJ, Ostreicher MJ et al (2007) Regulation of p53 tetramerization and nuclear export by ARC. Proc Natl Acad Sci USA 104:20826–20831. doi:10.1073/pnas.0710017104

    Article  PubMed  CAS  Google Scholar 

  16. Mercier I, Vuolo M, Madan R et al (2005) ARC, an apoptosis suppressor limited to terminally differentiated cells, is induced in human breast cancer and confers chemo- and radiation-resistance. Cell Death Differ 12:682–686. doi:10.1038/sj.cdd.4401631

    Article  PubMed  CAS  Google Scholar 

  17. Zhang YQ, Herman B Expression, modification of ARC (apoptosis repressor with a CARD domain) is distinctly regulated by oxidative stress in cancer cells. J Cell Biochem 2008 (Epub ahead of print)

  18. Renault F, Formstecher E, Callebaut I, Junier MP, Chneiweiss H (2003) The multifunctional protein PEA-15 is involved in the control of apoptosis and cell cycle in astrocytes. Biochem Pharmacol 66:1581–1588. doi:10.1016/S0006-2952(03)00514-8

    Article  PubMed  CAS  Google Scholar 

  19. Ricci-Vitiani L, Pedini F, Mollinari C et al (2004) Absence of caspase 8 and high expression of PED protect primitive neural cells from cell death. J Exp Med 200:1257–1266. doi:10.1084/jem.20040921

    Article  PubMed  CAS  Google Scholar 

  20. Condorelli G, Vigliotta G, Iavarone C et al (1998) PED/PEA-15 gene controls glucose transport and is overexpressed in type 2 diabetes mellitus. EMBO J 17:3858–3866. doi:10.1093/emboj/17.14.3858

    Article  PubMed  CAS  Google Scholar 

  21. Condorelli G, Vigliotta G, Cafieri A et al (1999) PED/PEA-15: an anti-apoptotic molecule that regulates FAS/TNFR1-induced apoptosis. Oncogene 18:4409–4415. doi:10.1038/sj.onc.1202831

    Article  PubMed  CAS  Google Scholar 

  22. Trencia A, Fiory F, Maitan MA et al (2004) Omi/HtrA2 promotes cell death by binding and degrading the anti-apoptotic protein ped/pea-15. J Biol Chem 279:46566–46572. doi:10.1074/jbc.M406317200

    Article  PubMed  CAS  Google Scholar 

  23. Condorelli G, Trencia A, Vigliotta G et al (2002) Multiple members of the mitogen-activated protein kinase family are necessary for PED/PEA-15 anti-apoptotic function. J Biol Chem 277:11013–11018. doi:10.1074/jbc.M110934200

    Article  PubMed  CAS  Google Scholar 

  24. Hao C, Beguinot F, Condorelli G et al (2001) Induction and intracellular regulation of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apoptosis in human malignant glioma cells. Cancer Res 61:1162–1170

    PubMed  CAS  Google Scholar 

  25. Xiao C, Yang BF, Asadi N, Beguinot F, Hao C (2002) Tumor necrosis factor-related apoptosis-inducing ligand-induced death-inducing signaling complex and its modulation by c-FLIP and PED/PEA-15 in glioma cells. J Biol Chem 277:25020–25025. doi:10.1074/jbc.M202946200

    Article  PubMed  CAS  Google Scholar 

  26. Formisano P, Perruolo G, Libertini S et al (2005) Raised expression of the antiapoptotic protein ped/pea-15 increases susceptibility to chemically induced skin tumor development. Oncogene 24:7012–7021. doi:10.1038/sj.onc.1208871

    Article  PubMed  CAS  Google Scholar 

  27. Glading A, Koziol JA, Krueger J, Ginsberg MH (2007) PEA-15 inhibits tumor cell invasion by binding to extracellular signal-regulated kinase 1/2. Cancer Res 67:1536–1544. doi:10.1158/0008-5472.CAN-06-1378

    Article  PubMed  CAS  Google Scholar 

  28. Scaffidi C, Schmitz I, Krammer PH, Peter ME (1999) The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem 274:1541–1548. doi:10.1074/jbc.274.3.1541

    Article  PubMed  CAS  Google Scholar 

  29. Clarke P, Tyler KL (2007) Down-regulation of cFLIP following reovirus infection sensitizes human ovarian cancer cells to TRAIL-induced apoptosis. Apoptosis 12:211–223. doi:10.1007/s10495-006-0528-4

    Article  PubMed  CAS  Google Scholar 

  30. White SJ, Lu P, Keller GM, Voelkel-Johnson C (2006) Targeting the short form of cFLIP by RNA interference is sufficient to enhance TRAIL sensitivity in PC3 prostate carcinoma cells. Cancer Biol Ther 5:1618–1623

    PubMed  CAS  Google Scholar 

  31. Lee TJ, Lee JT, Park JW, Kwon TK (2006) Acquired TRAIL resistance in human breast cancer cells are caused by the sustained cFLIP(L) and XIAP protein levels and ERK activation. Biochem Biophys Res Commun 351:1024–1030. doi:10.1016/j.bbrc.2006.10.163

    Article  PubMed  CAS  Google Scholar 

  32. El-Zawahry A, Lu P, White SJ, Voelkel-Johnson C (2006) In vitro efficacy of AdTRAIL gene therapy of bladder cancer is enhanced by trichostatin A-mediated restoration of CAR expression and downregulation of cFLIP and Bcl-XL. Cancer Gene Ther 13:281–289. doi:10.1038/sj.cgt.7700905

    Article  PubMed  CAS  Google Scholar 

  33. Brooks AD, Sayers TJ (2005) Reduction of the antiapoptotic protein cFLIP enhances the susceptibility of human renal cancer cells to TRAIL apoptosis. Cancer Immunol Immunother 54:499–505. doi:10.1007/s00262-004-0595-8

    Article  PubMed  CAS  Google Scholar 

  34. Korkolopoulou P, Goudopoulou A, Voutsinas G et al (2004) c-FLIP expression in bladder urothelial carcinomas: its role in resistance to Fas-mediated apoptosis and clinicopathologic correlations. Urology 63:1198–1204. doi:10.1016/j.urology.2004.01.007

    Article  PubMed  Google Scholar 

  35. Dolcet X, Llobet D, Pallares J, Rue M, Comella JX, Matias-Guiu X (2005) FLIP is frequently expressed in endometrial carcinoma and has a role in resistance to TRAIL-induced apoptosis. Lab Invest 85:885–894. doi:10.1038/labinvest.3700286

    Article  PubMed  CAS  Google Scholar 

  36. Chen HX, Liu YJ, Zhou XD, Luo RY (2005) Expression of cellular FLICE/caspase-8 inhibitory protein is associated with malignant potential in endometrial carcinoma. Int J Gynecol Cancer 15:663–670. doi:10.1111/j.1525-1438.2005.00122.x

    Article  PubMed  Google Scholar 

  37. Thomas RK, Kallenborn A, Wickenhauser C et al (2002) Constitutive expression of c-FLIP in Hodgkin and Reed-Sternberg cells. Am J Pathol 160:1521–1528

    PubMed  CAS  Google Scholar 

  38. Uherova P, Olson S, Thompson MA, Juskevicius R, Hamilton KS (2004) Expression of c-FLIP in classic and nodular lymphocyte-predominant Hodgkin lymphoma. Appl Immunohistochem Mol Morphol 12:105–110. doi:10.1097/00129039-200406000-00002

    PubMed  CAS  Google Scholar 

  39. Ryu BK, Lee MG, Chi SG, Kim YW, Park JH (2001) Increased expression of cFLIP(L) in colonic adenocarcinoma. J Pathol 194:15–19. doi:10.1002/path.835

    Article  PubMed  CAS  Google Scholar 

  40. Lee SH, Kim HS, Kim SY et al (2003) Increased expression of FLIP, an inhibitor of Fas-mediated apoptosis, in stomach cancer. APMIS 111:309–314. doi:10.1034/j.1600-0463.2003.1110203.x

    Article  PubMed  CAS  Google Scholar 

  41. Zhou XD, Yu JP, Liu J, Luo HS, Chen HX, Yu HG (2004) Overexpression of cellular FLICE-inhibitory protein (FLIP) in gastric adenocarcinoma. Clin Sci (Lond) 106:397–405. doi:10.1042/CS20030238

    Article  CAS  Google Scholar 

  42. Bullani RR, Huard B, Viard-Leveugle I, Byers HR, Irmler M, Saurat JH et al (2001) Selective expression of FLIP in malignant melanocytic skin lesions. J Invest Dermatol 117:360–364. doi:10.1046/j.0022-202x.2001.01418.x

    Article  PubMed  CAS  Google Scholar 

  43. Valnet-Rabier MB, Challier B, Thiebault S et al (2005) c-Flip protein expression in Burkitt’s lymphomas is associated with a poor clinical outcome. Br J Haematol 128:767–773. doi:10.1111/j.1365-2141.2005.05378.x

    Article  PubMed  CAS  Google Scholar 

  44. Valente G, Manfroi F, Peracchio C et al (2006) cFLIP expression correlates with tumour progression and patient outcome in non-Hodgkin lymphomas of low grade of malignancy. Br J Haematol 132:560–570. doi:10.1111/j.1365-2141.2005.05898.x

    Article  PubMed  CAS  Google Scholar 

  45. Eckelman BP, Salvesen GS, Scott FL (2006) Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7:988–994. doi:10.1038/sj.embor.7400795

    Article  PubMed  CAS  Google Scholar 

  46. Ramp U, Krieg T, Caliskan E et al (2004) XIAP expression is an independent prognostic marker in clear-cell renal carcinomas. Hum Pathol 35:1022–1028. doi:10.1016/j.humpath.2004.03.011

    Article  PubMed  CAS  Google Scholar 

  47. Shibata T, Mahotka C, Wethkamp N, Heikaus S, Gabbert HE, Ramp U (2007) Disturbed expression of the apoptosis regulators XIAP, XAF1, and Smac/DIABLO in gastric adenocarcinomas. Diagn Mol Pathol 16:1–8. doi:10.1097/01.pdm.0000213471.92925.51

    Article  PubMed  CAS  Google Scholar 

  48. Boatright KM, Deis C, Denault JB, Sutherlin DP, Salvesen GS (2004) Activation of caspases-8 and -10 by FLIP(L). Biochem J 382:651–657. doi:10.1042/BJ20040809

    Article  PubMed  CAS  Google Scholar 

  49. Micheau O, Thome M, Schneider P et al (2002) The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 277:45162–45171. doi:10.1074/jbc.M206882200

    Article  PubMed  CAS  Google Scholar 

  50. Chang DW, Xing Z, Pan Y et al (2002) c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J 21:3704–3714. doi:10.1093/emboj/cdf356

    Article  PubMed  CAS  Google Scholar 

  51. Higuchi H, Yoon JH, Grambihler A, Werneburg N, Bronk SF, Gores GJ (2003) Bile acids stimulate cFLIP phosphorylation enhancing TRAIL-mediated apoptosis. J Biol Chem 278:454–461. doi:10.1074/jbc.M209387200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the “Stiftung fuer Altersforschung” of the Heinrich-Heine University, Duesseldorf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Heikaus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 19 kb)

(TIF 8222 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heikaus, S., Kempf, T., Mahotka, C. et al. Caspase-8 and its inhibitors in RCCs in vivo: the prominent role of ARC. Apoptosis 13, 938–949 (2008). https://doi.org/10.1007/s10495-008-0225-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0225-6

Keywords

Navigation