Skip to main content

Advertisement

Log in

Arbutin, an intracellular hydroxyl radical scavenger, protects radiation-induced apoptosis in human lymphoma U937 cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Ionizing radiation (IR) can generate reactive oxygen species (ROS). Excessive ROS have the potential to damage cellular macromolecules including DNA, proteins, and lipids and eventually lead to cell death. In this study, we evaluated the potential of arbutin, a drug chosen from a series of traditional herbal medicine by measuring intracellular hydroxyl radical scavenging ability in X-irradiated U937 cells. Arbutin (hydroquinone-β-D-glucopyranoside), a naturally occurring glucoside of hydroquinone, has been traditionally used to treat pigmentary disorders. However, there are no reports describing the effect of arbutin on IR-induced apoptosis. We confirmed that arbutin can protect cells from apoptosis induced by X-irradiation. The combination of arbutin and X-irradiation could reduce intracellular hydroxyl radical production and prevent mitochondrial membrane potential loss. It also could down-regulate the expression of phospho-JNK, phospho-p38 in whole cell lysate and activate Bax in mitochondria. Arbutin also inhibits cytochrome C release from mitochondria to cytosol. To verify the role of JNK in X-irradiation-induced apoptosis, the cells were pretreated with a JNK inhibitor, and found that JNK inhibitor could reduce apoptosis induced by X-irradiation. Taken together, our data indicate that arbutin plays an anti-apoptotic role via decreasing intracellular hydroxyl radical production, inhibition of Bax-mitochondria pathway and activation of the JNK/p38 MAPK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

IR:

Ionizing radiation

ROS:

Reactive oxygen species

HPF:

Hydroxyphenyl fluorescein

DAF-2 DA:

Diaminofluorescein-2 diacetate

HE:

Hydroethidine

MMP:

Mitochondrial membrane potential

TMRM:

Tetramethylrhodamine methyl ester

PI:

Propidium iodide

FITC:

Fluorescein isothiocyanate

pNA:

p-nitroanilide

References

  1. Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65:27–33

    Article  PubMed  CAS  Google Scholar 

  2. Wallace SS (1998) Enzymatic processing of radiation-induced free radical damage in DNA. Radiat Res 150:S60–S79

    Article  PubMed  CAS  Google Scholar 

  3. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  PubMed  CAS  Google Scholar 

  4. Singh SV, Srivastava SK, Choi S, Lew KL, Antosiewicz J, Xiao D et al (2005) Sulforaphane induced cell death in human prostate cancer cells is initiated by reactive oxygen species. J Biol Chem 280:19911–19924

    Article  PubMed  CAS  Google Scholar 

  5. Griffiths HR, Dias IH, Willetts RS, Devitt A (2014) Redox regulation of protein damage in plasma. Redox Biol 2:430–435

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Bump EA, Malaker K (1998) Radioprotectors: chemical, biological, and clinical perspectives. In: Bump EA (ed) Introduction. CRC Press, New York, pp 7–8

    Google Scholar 

  7. Lee J, Hwang JS, Hwang IS, Cho J, Lee E, Kim Y et al (2012) Coprisin-induced antifungal effects in Candida albicans correlate with apoptotic mechanisms. Free Radic Biol Med 52:2302–2311

    Article  PubMed  CAS  Google Scholar 

  8. Hwang IS, Lee J, Hwang JH, Kim KJ, Lee DG (2012) Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J 279:1327–1338

    Article  PubMed  CAS  Google Scholar 

  9. Yu Y, Fan SM, Song JK, Tashiro S, Onodera S, Ikejima T (2012) Hydroxyl radical (·OH) played a pivotal role in oridonin-induced apoptosis and autophagy in human epidermoid carcinoma A431 cells. Biol Pharm Bull 35:2148–2159

    Article  PubMed  CAS  Google Scholar 

  10. Khanal T, Kim HG, Hwang YP, Kong MJ, Kang MJ, Yeo HK et al (2011) Role of metabolism by the human intestinal microflora in arbutin-induced cytotoxicity in HepG2 cell cultures. Biochem Biophys Res Commun 413:318–324

    Article  PubMed  CAS  Google Scholar 

  11. Chakraborty AK, Funasaka Y, Komoto M, Ichihashi M (1998) Effect of arbutin on melanogenic proteins in human melanocytes. Pigment Cell Res 11:206–212

    Article  PubMed  CAS  Google Scholar 

  12. Maeda K, Fukuda M (1996) Arbtuin: mechanism of its depigmenting action in human melanocyte culture. J Pharmcol Exp Ther 276:765–769

    CAS  Google Scholar 

  13. Nakajima M, Shinoda I, Fukuwatari Y, Hayasawa H (1998) Arbutin increases the pigmentation of cultured human melanocytes through mechanisms other than the induction of tyrosinase activity. Pigment Cell Res 11:12–17

    Article  PubMed  CAS  Google Scholar 

  14. Lim YJ, Lee EH, Kang TH, Ha SK, Oh MS, Kim SM et al (2009) Inhibitory effects of arbutin on melanin biosynthesis of alpha-melanocyte stimulating hormone-induced hyperpigmentation in cultured brownish guinea pig skin tissues. Arch Pharm Res 32:367–373

    Article  PubMed  CAS  Google Scholar 

  15. Hermanns JF, Petit L, Martalo O, Piérard-Franchimont C, Cauwenbergh G, Piérard GE (2000) Unraveling the patterns of subclinical pheomelanin-enriched facial hyperpigmentation: effect of depigmenting agents. Dermatology 201:118–122

    Article  PubMed  CAS  Google Scholar 

  16. Hu ZM, Zhou Q, Lei TC, Ding SF, Xu SZ (2009) Effects of hydroquinone and its glucoside derivatives on melanogenesis and antioxidation: biosafety as skin whitening agents. J Dermatol Sci 55:179–184

    Article  PubMed  CAS  Google Scholar 

  17. Li H, Jeong YM, Kim SY, Kim MK, Kim DS (2011) Arbutin inhibits TCCSUP human bladder cancer cell proliferation via up-regulation of p21. Pharmazie 66:306–309

    PubMed  CAS  Google Scholar 

  18. Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T (2003) Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 278:3170–3175

    Article  PubMed  CAS  Google Scholar 

  19. Sellins KS, Cohen JJ (1987) Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes. J Immunol 139:3199–3206

    PubMed  CAS  Google Scholar 

  20. Zhao QL, Fujiwara Y, Kondo T (2006) Mechanism of cell death induction by nitroxide and hyperthermia. Free Radic Biol Med 40:1131–1143

    Article  PubMed  CAS  Google Scholar 

  21. Van Heerde WL, de Groot PG, Reutelingsperger CP (1995) The complexity of the phospholipid binding protein Annexin V. Thromb Haemost 73:172–179

    PubMed  Google Scholar 

  22. Royall JA, Ischiropoulos H (1993) Evaluation of 20, 70-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys 302:348–355

    Article  PubMed  CAS  Google Scholar 

  23. Gorman A, McGowan A, Cotter TG (1997) Role of peroxide and superoxide anion during tumour cell apoptosis. FEBS Lett 404:27–33

    Article  PubMed  CAS  Google Scholar 

  24. Zhao QL, Fujiwara Y, Kondo T (2010) Synergistic induction of apoptosis and caspase-independent autophagic cell death by a combination of nitroxide Tempo and heat shock in human leukemia U937 cells. Apoptosis 15:1270–1283

    Article  PubMed  CAS  Google Scholar 

  25. Datta R, Kojima H, Yoshida K, Kufe D (1997) Caspase-3-mediated cleavage of protein kinase C θ in induction of apoptosis. J Biol Chem 272:20317–20320

    Article  PubMed  CAS  Google Scholar 

  26. Cui ZG, Kondo T, Matsumoto H (2006) Enhancement of apoptosis by nitric oxide released from alpha-phenyl-tert-butyl nitrone under hyperthermic conditions. J Cell Physiol 206:468–476

    Article  PubMed  CAS  Google Scholar 

  27. Antonsson B, Montessuit S, Sanchez B, Martinou JC (2001) Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem 276:11615–11623

    Article  PubMed  CAS  Google Scholar 

  28. Narvaez CJ, Welsh J (2001) Role of mitochondria and caspases in vitamin D-mediated apoptosis of MCF-7 breast cancer cells. J Biol Chem 276:9101–9107

    Article  PubMed  CAS  Google Scholar 

  29. Tsujimoto Y, Shimizu S (2000) Bcl-2 family: life-or-death switch. FEBS Lett 466:6–10

    Article  PubMed  CAS  Google Scholar 

  30. Hui Yu (2012) Typical cell signaling response to ionizing radiation: dNA damage and extranuclear damage. Chin J Cancer Res 24:83–89

    Article  Google Scholar 

  31. Kim MJ, Yun HS, Hong EH, Lee SJ, Baek JH, Lee CW et al (2013) Depletion of end-binding protein 1 (EB1) promotes apoptosis of human non-small-cell lung cancer cells via reactive oxygen species and Bax-mediated mitochondrial dysfunction. Cancer Lett 339:15–24

    Article  PubMed  CAS  Google Scholar 

  32. Kim BM, Rode AB, Han EJ, Hong IS, Hong SH (2012) 5-Phenylselenyl- and 5-methylselenyl-methyl-2′-deoxyuridine induce oxidative stress, DNA damage, and caspase-2-dependent apoptosis in cancer cells. Apoptosis 17:200–216

    Article  PubMed  CAS  Google Scholar 

  33. Nawarak J, Huang-Liu R, Kao SH, Liao HH, Sinchaikul S, Chen ST et al (2009) Proteomics analysis of A375 human malignant melanoma cells in response to arbutin treatment. Biochim Biophys Acta 1794:159–167

    Article  PubMed  CAS  Google Scholar 

  34. Nosál’ová V, Sotníková R, Drábiková K, Fialová S, Košťálová D, Banášová S et al (2010) Chemiluminescence response induced by mesenteric ischaemia/reperfusion: effect of antioxidative compounds ex vivo. Interdiscip Toxicol 3:105–108

    PubMed  PubMed Central  Google Scholar 

  35. Corbiere C, Liagre B, Terro F, Beneytout JL (2004) Induction of antiproliferative effect by diosgenin through activation of p53, release of apoptosis-inducing factor (AIF) and modulation of caspase-3 activity in different human cancer cells. Cell Res 14:188–196

    Article  PubMed  CAS  Google Scholar 

  36. Gottlieb E, Armour SM, Harris MH, Thompson CB (2003) Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 10:709–717

    Article  PubMed  CAS  Google Scholar 

  37. Gottlieb RA (2000) Mitochondria: execution central. FEBS Lett 482:6–12

    Article  PubMed  CAS  Google Scholar 

  38. Zamzami N, Marchetti P, Castedo M, Decaudin D, Macho A, Hirsch T et al (1995) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 182:367–377

    Article  PubMed  CAS  Google Scholar 

  39. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extract: requirements for dATP and cytochrome C. Cell 86:147–157

    Article  PubMed  CAS  Google Scholar 

  40. Nitobe J, Yamaguchi S, Okuyama M, Nozaki N, Sata M, Miyamoto T et al (2003) Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas-mediated apoptosis in cardiac myocytes. Cardiovasc Res 57:119–128

    Article  PubMed  CAS  Google Scholar 

  41. Strasser A, Newton K (1999) FADD/MORT1, a signal transducer that can promote cell death or cell growth. Int J Biochem Cell Biol 31:533–537

    Article  PubMed  CAS  Google Scholar 

  42. Yin XM (2000) Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. Cell Res 10:161–167

    Article  PubMed  CAS  Google Scholar 

  43. Kim BJ, Ryu SW, Song BJ (2006) JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem 281:21256–21265

    Article  PubMed  CAS  Google Scholar 

  44. Verheij M, Ruiter GA, Zerp SF, Van-Blitterswijk WJ, Fuks Z, Haimovitz-Friedman A et al (1998) The role of the stress-activated protein kinase (SAPK/JNK) signaling pathway in radiation-induced apoptosis. Radiother Oncol 47:225–232

    Article  PubMed  CAS  Google Scholar 

  45. Chen YR, Tan TH (2000) The c-Jun N-terminal kinase pathway and apoptotic signaling. Int J Oncol 16:651–662

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Grant-in-Aid for the Cooperative Research Project from Joint Usage/Research Center (Joint Usage/Research Center for Science-Based Natural Medicine) Institute of Natural Medicine. University of Toyama; and in part by the International Exchange Fund of The Sugitani Campus (Medical and Pharmacy) (A) 2012, University of Toyama, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Li Zhao or Yu-Fei Jiao.

Additional information

Li-Hua Wu and Peng Li these authors have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, LH., Li, P., Zhao, QL. et al. Arbutin, an intracellular hydroxyl radical scavenger, protects radiation-induced apoptosis in human lymphoma U937 cells. Apoptosis 19, 1654–1663 (2014). https://doi.org/10.1007/s10495-014-1032-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1032-x

Keywords

Navigation