Skip to main content
Log in

Curcumin induces the apoptotic intrinsic pathway via upregulation of reactive oxygen species and JNKs in H9c2 cardiac myoblasts

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Curcumin derived from the rhizome of turmeric (Curcuma longa L.), is a well known coloring culinary agent, that has therapeutic properties against diverse pathologies such as cancer, atherosclerosis and heart failure. Given the salutary potential of curcumin, deciphering its mode of action particularly in cardiac cells, is of outstanding value. Accumulating evidence implicates curcumin in the regulation of multiple signaling pathways leading to cell survival or apoptosis. Therefore, the present study aimed at elucidating the molecular mechanisms triggered by curcumin in H9c2 cells. Curcumin was found to activate p38-mitogen-activated protein kinase (p38-MAPK) as well as c-jun NH2 terminal kinases (JNKs), in a dose- and time-dependent manner. We also observed curcumin to impair cell survival by promoting apoptosis, evidenced by chromatin condensation, poly(ADP-ribose) polymerase (PARP) and caspase-3 cleavage, as well as Bax translocation and cytochrome c release into the cytosol. Curcumin-induced apoptosis was ascribed to JNKs, since hindering their activity abolished PARP fragmentation. Furthermore, we identified curcumin to exert a pro-oxidative activity, with 2′,7′-dichlorofluorescin diacetate (DCFH-DA) staining revealing up-regulation of reactive oxygen species (ROS) levels and anti-oxidants found to abrogate PARP cleavage. In conclusion, curcumin was found to stimulate the apoptotic cell death of H9c2 cells by upregulating ROS generation and triggering activation of JNKs. With reports underscoring the capacity of curcumin to perturb the cellular redox balance ensuring survival or enhancing apoptosis, determination of its mode of action appears to be critical. Future studies should assess the appropriate administration conditions of curcumin, so as to optimize its therapeutic potential against cardiovascular pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

DMSO:

Dimethyl sulphoxide

DTT:

Ditheiothreitol

ECL:

Enhanced chemiluminescence

ERK:

Extracellular signal-regulated kinase

Hsp:

Heat shock-protein

JNK:

c-Jun NH2 terminal kinase

MAPK:

Mitogen-activated protein kinase

MSK1:

Mitogen and stress activating kinase 1

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PAGE:

Polyacrylamide gel electrophoresis

PARP:

Poly(ADP-ribose) polymerase

PMSF:

Phenyl methyl sulphonyl fluoride

ROS:

Reactive oxygen species

TBS:

Tris-buffered saline

References

  1. Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. Adv Exp Med Biol 595:1–75. doi:10.1007/978-0-387-46401-5_1

    Article  PubMed  Google Scholar 

  2. Kapakos G, Youreva V, Srivastava AK (2012) Cardiovascular protection by curcumin: molecular aspects. Indian J Biochem Biophys 49:306–315 Review

    PubMed  CAS  Google Scholar 

  3. Kumar SS, Surianarayanan M, Vijayaraghavan R, Mandal AB, Macfarlane DR (2014) Curcumin loaded poly(2-hydroxyethyl methacrylate) nanoparticles from gelled ionic liquid - In vitro cytotoxicity and anti-cancer activity in SKOV-3 cells. Eur J Pharm Sci 51:34–44. doi:10.1016/j.ejps.2013.08.036

    Article  PubMed  CAS  Google Scholar 

  4. Pereira AG, Fajardo AR, Nocchi S, Nakamura CV, Rubira AF, Muniz EC (2013) Starch-based microspheres for sustained-release of curcumin: preparation and cytotoxic effect on tumor cells. Carbohydr Polym 98:711–720. doi:10.1016/j.carbpol.2013.06.013

    Article  PubMed  CAS  Google Scholar 

  5. Chainani-Wu N (2003) Safety and anti-inflammatory activity of curcumin: a component of turmeric (Curcuma longa). J Altern Complement Med 9:161–168. doi:10.1089/107555303321223035

    Article  PubMed  Google Scholar 

  6. Priyadarsini KI, Maity DK, Nalk GH, Kumar MS, Unnikrishnan MK, Satav JG, Mohan H (2003) Role of phenolic O–H and methelene hydrogen on the free radical reaction and antioxidant activity of curcumin. Free Radic Biol Med 35:475–484. doi:10.1016/S0891-5849(03)00325-3

    Article  PubMed  CAS  Google Scholar 

  7. Woo JH, Kim YH, Choi YJ, Kim DG, Lee KS, Bae JH et al (2003) Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, downregulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis 24:1199–1208. doi:10.1093/carcin/bgg082

    Article  PubMed  CAS  Google Scholar 

  8. Chan WH, Wu HY, Chang WH (2006) Dosage effects of curcumin on cell death types in a human osteoblast cell line. Food Chem Toxicol 44:1362–1371. doi:10.1016/j.fct.2006.03.001

    Article  PubMed  CAS  Google Scholar 

  9. Sharma OP (1976) Antioxidant activity of curcumin and related compounds. Biochem Pharmacol 25:1811–1812. doi:10.1016/0006-2952(76)90421-4

    Article  PubMed  CAS  Google Scholar 

  10. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028

    PubMed  CAS  Google Scholar 

  11. Orrenius S (1993) Mechanisms of oxidative cell damage. In: Poli G, Albano E, Dianzani MU (eds) Free radicals: from basic science to medicine. Birkhäuser Verlag, Basel, p 47–64

    Chapter  Google Scholar 

  12. Ferrari R, Guardigli G, Mele D, Percoco GF, Ceconi C, Curello S (2004) Oxidative stress during myocardial ischaemia and heart failure. Curr Pharm Des 10:1699–1711. doi:10.2174/1381612043384718

    Article  PubMed  CAS  Google Scholar 

  13. Skulachev VP (1998) Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 423:275–280. doi:10.1016/S0014-5793(98)00061-1

    Article  PubMed  CAS  Google Scholar 

  14. Konstantinidis K, Whelan RS, Kitsis RN (2012) Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol 32:1552–1562. doi:10.1161/ATVBAHA.111.224915

    Article  PubMed  CAS  Google Scholar 

  15. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252. doi:10.1016/S0092-8674(00)00116-1

    Article  PubMed  CAS  Google Scholar 

  16. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40. doi:10.1038/35065000

    Article  PubMed  CAS  Google Scholar 

  17. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869 Review

    PubMed  CAS  Google Scholar 

  18. Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR (1991) Phosphorylation of c-jun mediated by MAP kinases. Nature 353:670–674. doi:10.1038/353670a0

    Article  PubMed  CAS  Google Scholar 

  19. Yamamoto K, Ichijo H, Korsmeyer SJ (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G2/M. Mol Cell Biol 19:8469–8478

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR (1994) The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369:156–160. doi:10.1038/369156a0

    Article  PubMed  CAS  Google Scholar 

  21. Dougherty CJ, Kubasiak LA, Prentice H, Andreka P, Bishopric NH, Webster KA (2002) Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochem J 362:561–571

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Han J, Lee JD, Bibbs L, Ulevitch RJ (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265:808–811. doi:10.1126/science.7914033

    Article  PubMed  CAS  Google Scholar 

  23. Porras A, Zuluaga S, Black E, Valladares A, Alvarez AM, Ambrosino C et al (2004) P38 alpha mitogen-activated protein kinase sensitizes cells to apoptosis induced by different stimuli. Mol Biol Cell 15:922–933. doi:10.1091/mbc.E03-08-0592

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Liu B, Fang M, Lu Y, Mills GB, Fan Z (2001) Involvement of JNK-mediated pathway in EGF-mediated protection against paclitaxel-induced apoptosis in SiHa human cervical cancer cells. Br J Cancer 85:303–311. doi:10.1054/bjoc.2001.1910

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Werlen G, Hausmann B, Naeher D, Palmer E (2003) Signaling life and death in the thymus: timing is everything. Science 299:1859–1863. doi:10.1126/science.1067833

    Article  PubMed  CAS  Google Scholar 

  26. Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D et al (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinas-2 and phosphorylation of the small heat shock proteins. Cell 78:1027–1037. doi:10.1016/0092-8674(94)90277-1

    Article  PubMed  CAS  Google Scholar 

  27. Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Tanaka M et al (1997) Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Investig 100:1813–1821. doi:10.1172/JCI119709

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Kim JH, Park JM, Kim EK, Lee JO, Lee SK, Jung JH et al (2010) Curcumin stimulates glucose uptake through AMPK-p38 MAPK pathways in L6 myotube cells. J Cell Physiol 223:771–778. doi:10.1002/jcp.22093

    PubMed  CAS  Google Scholar 

  29. Han X, Xu B, Beevers CS, Odaka Y, Chen L, Liu L et al (2012) Curcumin inhibits protein phosphatases 2A and 5, leading to activation of mitogen-activated protein kinases and death in tumor cells. Carcinogenesis 33:868–875. doi:10.1093/carcin/bgs029

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Lee YJ, Kim NY, Suh YA, Lee C (2011) Involvement of ROS in curcumin-induced autophagic cell death. Korean J Physiol Pharmacol 15:1–7. doi:10.4196/kjpp.2011.15.1.1

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ et al (2011) Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep 28:1937–1955. doi:10.1039/c1np00051a

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Gottlieb RA, Granville DJ (2002) Analyzing mitochondrial changes during apoptosis. Methods 26:341–347. doi:10.1016/S1046-2023(02)00040-3

    Article  PubMed  CAS  Google Scholar 

  33. Hua WF, Fu YS, Liao YJ, Xia WJ, Chen YC, Zeng YX et al (2010) Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells. Eur J Pharmacol 637:16–21. doi:10.1016/j.ejphar.2010.03.051

    Article  PubMed  CAS  Google Scholar 

  34. Erlank H, Elmann A, Kohen R, Kanner J (2011) Polyphenols activate Nrf2 in astrocytes via H2O2, semiquinones, and quinones. Free Radic Biol Med 51:2319–2327. doi:10.1016/j.freeradbiomed.2011.09.033

    Article  PubMed  CAS  Google Scholar 

  35. Thomson S, Clayton AL, Hazzalin CA, Rose S, Barratt MJ, Mahadevan LC (1999) The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J 18:4779–4793. doi:10.1093/emboj/18.17.4779

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Soldani C, Scovassi AI (2002) Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7:321–328

    Article  PubMed  CAS  Google Scholar 

  37. Renault TT, Teijido O, Antonsson B, Dejean LM, Manon S (2013) Regulation of Bax mitochondrial localization by Bcl-2 and Bcl-x(L): keep your friends close but your enemies closer. Int J Biochem Cell Biol 45:64–67. doi:10.1016/j.biocel.2012.09.022

    Article  PubMed  CAS  Google Scholar 

  38. Balasubramanyam M, Koteswari AA, Kumar RS, Monickaraj SF, Maheswari JU, Mohan V (2003) Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications. J Biosci 28:715–721

    Article  PubMed  CAS  Google Scholar 

  39. McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  40. Samuni Y, Goldstein S, Dean OM, Berk M (2013) The chemistry and biological activities of N-acetylcysteine. Bioch Biophys Acta 1830:4117–4129. doi:10.1016/j.bbagen.2013.04.016

    Article  CAS  Google Scholar 

  41. Epstein JA (2008) Currying favor for the heart. J Clin Investig 118:850–852. doi:10.1172/JCI34650

    PubMed Central  PubMed  CAS  Google Scholar 

  42. Sikora E, Scapagnini G, Barbagallo M (2010) Curcumin, inflammation, ageing and age-related diseases. Immun Ageing 7:1. doi:10.1186/1742-4933-7-1

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Brosková Z, Drábiková K, Sotníková R, Fialová S, Knezl V (2013) Effect of plant polyphenols on ischemia-reperfusion injury of the isolated rat heart and vessels. Phytother Res 27:1018–1022. doi:10.1002/ptr.4825

    Article  PubMed  CAS  Google Scholar 

  44. Wang NP, Wang ZF, Tootle S, Philip T, Zhao ZQ (2012) Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction. Br J Pharmacol 167:1550–1562. doi:10.1111/j.1476-5381.2012.02109.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Hosseinzadeh L, Behravan J, Mosaffa F, Bahrami G, Bahrami A, Karimi G (2011) Curcumin potentiates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells through generation of reactive oxygen species. Food Chem Toxicol 49:1102–1109. doi:10.1016/j.fct.2011.01.021

    Article  PubMed  CAS  Google Scholar 

  46. Kaushik G, Kaushik T, Yadav SK, Sharma SK, Ranawat P, Khanduja KL, Pathak CM (2012) Curcumin sensitizes lung adenocarcinoma cells to apoptosis via intracellular redox status mediated pathway. Indian J Exp Biol 50:853–861

    PubMed  CAS  Google Scholar 

  47. Ayli EE, Dugas-Breit S, Li W, Marshall C, Zhao L, Meulener M et al (2010) Curcuminoids activate p38 MAP kinases and promote UVB-dependent signalling in keratinocytes. Exp Dermatol 19:493–500. doi:10.1111/j.1600-0625.2010.01081.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Sánchez Y, Simón GP, Calviño E, de Blas E, Aller P (2010) Curcumin stimulates reactive oxygen species production and potentiates apoptosis induction by the antitumor drugs arsenic trioxide and lonidamine in human myeloid leukemia cell lines. J Pharmacol Exp Ther 335:114–123. doi:10.1124/jpet.110.168344

    Article  PubMed  CAS  Google Scholar 

  49. Cao A, Li Q, Yin P, Dong Y, Shi H, Wang L, Ji G, Xie J, Wu D (2013) Curcumin induces apoptosis in human gastric carcinoma AGS cells and colon carcinoma HT-29 cells through mitochondrial dysfunction and endoplasmic reticulum stress. Apoptosis 18:1391–1402. doi:10.1007/s10495-013-0871-1

    Article  PubMed  CAS  Google Scholar 

  50. Yang CW, Chang CL, Lee HC, Chi CW, Pan JP, Yang WC (2012) Curcumin induces the apoptosis of human monocytic leukemia THP-1 cells via the activation of JNK/ERK pathways. BMC Complement Altern Med 12:22. doi:10.1186/1472-6882-12-22

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Pan J, Li H, Ma JF, Tan YY, Xiao Q, Ding JQ, Chen SD (2012) Curcumin inhibition of JNKs prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease through suppressing mitochondria dysfunction. Transl Neurodegener 1:16. doi:10.1186/2047-9158-1-16

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Jeong CW, Yoo KY, Lee SH, Jeong HJ, Lee CS, Kim SJ (2012) Curcumin protects against regional myocardial ischemia/reperfusion injury through activation of RISK/GSK-3β and inhibition of p38 MAPK and JNK. J Cardiovasc Pharmacol Ther 17:387–394. doi:10.1177/1074248412438102

    Article  PubMed  CAS  Google Scholar 

  53. Fan J, Li X, Yan YW, Tian XH, Hou WJ, Tong H, Bai SL (2012) Curcumin attenuates rat thoracic aortic aneurysm formation by inhibition of the c-Jun N-terminal kinase pathway and apoptosis. Nutrition 28:1068–1074. doi:10.1016/j.nut.2012.02.006

    Article  PubMed  CAS  Google Scholar 

  54. Ma J, Phillips L, Wang Y, Dai T, LaPage J, Natarajan R, Adler SG (2010) Curcumin activates the p38MPAK-HSP25 pathway in vitro but fails to attenuate diabetic nephropathy in DBA2J mice despite urinary clearance documented by HPLC. BMC Complement Altern Med 10:67. doi:10.1186/1472-6882-10-67

    PubMed Central  PubMed  Google Scholar 

  55. Katanasaka Y, Sunagawa Y, Hasegawa K, Morimoto T (2013) Application of curcumin to heart failure therapy by targeting transcriptional pathway in cardiomyocytes. Biol Pharm Bull 36:13–17. doi:10.1248/bpb.b212022

    Article  PubMed  CAS  Google Scholar 

  56. González-Salazar A, Molina-Jijón E, Correa F, Zarco-Márquez G, Calderón-Oliver M, Tapia E et al (2011) Curcumin protects from cardiac reperfusion damage by attenuation of oxidant stress and mitochondrial dysfunction. Cardiovasc Toxicol 11:357–364. doi:10.1007/s12012-011-9128-9

    Article  PubMed  CAS  Google Scholar 

  57. Watson JL, Greenshields A, Hill R, Hilchie A, Lee PW, Giacomantonio CA, Hoskin DW (2010) Curcumin-induced apoptosis in ovarian carcinoma cells is p53-independent and involves p38 mitogen-activated protein kinase activation and downregulation of Bcl-2 and survivin expression and Akt signaling. Mol Carcinog 49:13–24. doi:10.1002/mc.20571

    PubMed  CAS  Google Scholar 

  58. Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–5588

    PubMed Central  PubMed  CAS  Google Scholar 

  59. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37:299–310. doi:10.1016/j.molcel.2010.01.025

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Haldar S, Jena M, Croce CM (1995) Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci USA 92:4507–4511

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Walensky LD, Gavathiotis E (2011) BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Trends Biochem Sci 36:642–652. doi:10.1016/j.tibs.2011.08.009

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW (2002) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9:423–432. doi:10.1016/S1097-2765(02)00442-2

    Article  PubMed  CAS  Google Scholar 

  63. Bogoyevitch MA (2000) Signalling via stress-activated mitogen-activated protein kinases in the cardiovascular system. Cardiovasc Res 45:826–842. doi:10.1016/S0008-6363(99)00386-7

    Article  PubMed  CAS  Google Scholar 

  64. Chaudhuri J, Chowdhury AA, Biswas N, Manna A, Chatterjee S, Mukherjee T et al (2014) Superoxide activates mTOR-eIF4E-Bax route to induce enhanced apoptosis in leukemic cells. Apoptosis. doi:10.1007/s10495-013-0904-9

    PubMed  Google Scholar 

  65. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818. doi:10.1021/mp700113r

    Article  PubMed  CAS  Google Scholar 

  66. Menon VP, Sudheer AR (2007) Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol 595:105–125. doi:10.1007/978-0-387-46401-5_3

    Article  PubMed  Google Scholar 

  67. Lapidot T, Granit R, Kanner J (2005) Lipid peroxidation by “free” iron ions and myoglobin as affected by dietary antioxidants in simulated gastric fluids. J Agric Food Chem 53:3383–3390. doi:10.1021/jf040402g

    Article  PubMed  CAS  Google Scholar 

  68. Jaruga E, Sokal A, Chrul S, Bartosz G (1998) Apoptosis-independent alterations in membrane dynamics induced by curcumin. Exp Cell Res 245:303–312. doi:10.1006/excr.1998.4225

    Article  PubMed  CAS  Google Scholar 

  69. Hirsch T, Marchetti P, Susin SA, Dallaporta B, Zamzami N, Marzo I, Genskens M, Kroemer G (1997) The apoptosis–necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene 15:1573–1581

    Article  PubMed  CAS  Google Scholar 

  70. Bhaumik S, Anjum R, Rangaraj N, Pardhasaradhi BVV, Khar A (1999) Curcumin mediated apoptosis in AK-5 tumor cells involves the production of reactive oxygen intermediates. FEBS Lett 456:311–314. doi:10.1016/S0014-5793(99)00969-2

    Article  PubMed  CAS  Google Scholar 

  71. Fang J, Lu J, Holmgren A (2005) Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. J Biol Chem 280:25284–25890. doi:10.1074/jbc.M414645200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. P. Apostolakos for providing us with the DCFH-DA stain and for his assistance in acquiring the digital images with the Zeiss Axioplan microscope. This work was supported by the Special Research Account of the University of Athens (Project Number: 70/4/11242). The funding body had no involvement in the design of the present study, neither in the experiments performed nor in the analysis of the data or the writing of the report.

Conflict of interest

The authors declare that they have no conflict of interest associated with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Gaitanaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zikaki, K., Aggeli, IK., Gaitanaki, C. et al. Curcumin induces the apoptotic intrinsic pathway via upregulation of reactive oxygen species and JNKs in H9c2 cardiac myoblasts. Apoptosis 19, 958–974 (2014). https://doi.org/10.1007/s10495-014-0979-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-0979-y

Keywords

Navigation