Skip to main content
Log in

Claudin-7 suppresses the cytotoxicity of TRAIL-expressing mesenchymal stem cells in H460 human non-small cell lung cancer cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Evidence suggests that the cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising candidate for cancer therapeutics. Studies have also shown that claudin-7 (CLDN7) expression is variably dysregulated in various malignant neoplasms, with a role in lung cancer that has not been definitively decided. This work investigated the differential sensitivity of CLDN7-overexpressing human NSCLC H460 cells to TRAIL in vitro and in mouse xenografts, and explored the molecular mechanisms responsible for these effects. NCI-H460 cells were transfected or not with green fluorescent protein-tagged CLDN7. Each group was then exposed to mesenchymal stem cells (MSCs) or red fluorescent protein-tagged MSCs transduced with lentivirus expressing membrane-bound TRAIL. The effects and related mechanisms of these treatments were evaluated in vitro, and in vivo in murine xenografts. Our results indicate that TRAIL induced apoptosis in H460 cells in vitro, and in established xenograft tumors TRAIL was associated with a decrease in tumor size, tumor weight, and circulating tumor cells. CLDN7 was found to inhibit the MEK/ERK signaling pathway, leading to inhibition of death receptor 5 (TNFRSF10B). The cytotoxicity of TRAIL was confirmed in H460 cells and in vivo, and CLDN7 suppressed the cytotoxicity of TRAIL in H460 cells. Our results indicate that TRAIL may be a useful therapy to enhance apoptosis in CLDN7-negative lung cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Soler AP, Miller RD, Laughlin KV, Carp NZ, Klurfeld DM, Mullin JM (1999) Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis 20:1425–1431

    Article  CAS  PubMed  Google Scholar 

  2. Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285–293

    Article  CAS  PubMed  Google Scholar 

  3. Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286:C1213–C1228

    Article  CAS  PubMed  Google Scholar 

  4. Peacock RE, Keen TJ, Inglehearn CF (1997) Analysis of a human gene homologous to rat ventral prostate.1 protein. Genomics 46:443–449

    Article  CAS  PubMed  Google Scholar 

  5. Paschoud S, Bongiovanni M, Pache JC, Citi S (2007) Claudin-1 and claudin-5 expression patterns differentiate lung squamous cell carcinomas from adenocarcinomas. Mod Pathol 20:947–954

    Article  CAS  PubMed  Google Scholar 

  6. Moldvay J, Jäckel M, Páska C, Soltész I, Schaff Z, Kiss A (2007) Distinct claudin expression profile in histologic subtypes of lung cancer. Lung Cancer 57:159–167

    Article  PubMed  Google Scholar 

  7. Blackman B, Russell T, Nordeen SK, Medina D, Neville MC (2005) Claudin 7 expression and localization in the normal murine mammary gland and murine mammary tumors. Breast Cancer Res 7:R248–R255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ladwein M, Pape UF, Schmidt DS, Schnölzer M, Fiedler S, Langbein L, Franke WW, Moldenhauer G, Zöller M (2005) The cell–cell adhesion molecule EpCAM interacts directly with the tight junction protein claudin-7. Exp Cell Res 309:345–357

    Article  CAS  PubMed  Google Scholar 

  9. Kominsky SL, Argani P, Korz D, Evron E, Raman V, Garrett E, Rein A, Sauter G, Kallioniemi OP, Sukumar S (2003) Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 22:2021–2033

    Article  CAS  PubMed  Google Scholar 

  10. Oshima T, Kunisaki C, Yoshihara K, Yamada R, Yamamoto N, Sato T, Makino H, Yamagishi S, Nagano Y, Fujii S, Shiozawa M, Akaike M, Wada N, Rino Y, Masuda M, Tanaka K, Imada T (2008) Reduced expression of the claudin-7 gene correlates with venous invasion and liver metastasis in colorectal cancer. Oncol Rep 19:953–959

    CAS  PubMed  Google Scholar 

  11. Usami Y, Chiba H, Nakayama F, Ueda J, Matsuda Y, Sawada N, Komori T, Ito A, Yokozaki H (2006) Reduced expression of claudin-7 correlates with invasion and metastasis in squamous cell carcinoma of the esophagus. Hum Pathol 37:569–577

    Article  CAS  PubMed  Google Scholar 

  12. Lu Z, Ding L, Hong H, Hoggard J, Lu Q, Chen YH (2011) Claudin-7 inhibits human lung cancer cell migration and invasion through ERK/MAPK signaling pathway. Exp Cell Res 317:1935–1946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Yamamoto T, Oshima T, Yoshihara K, Yamanaka S, Nishii T, Arai H, Inui K, Kaneko T, Nozawa A, Woo T, Rino Y, Masuda M, Imada T (2010) Reduced expression of claudin-7 is associated with poor outcome in non-small cell lung cancer. Oncol Lett 1:501–505

    PubMed Central  PubMed  Google Scholar 

  14. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3:673–682

    Article  CAS  PubMed  Google Scholar 

  15. Jin Z, McDonald ER 3rd, Dicker DT, El-Deiry WS (2004) Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J Biol Chem 279:35829–35839

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Fang B (2005) Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 12:228–237

    Article  CAS  PubMed  Google Scholar 

  17. Platzbecker U, Kurre P, Guardiola P, Ward JL, Radich JP, Kiem HP, Deeg HJ (2004) Fanconi anemia type C-deficient hematopoietic cells are resistant to TRAIL (TNF-related apoptosis-inducing ligand)-induced cleavage of pro-caspase-8. Exp Hematol 32:815–821

    Article  CAS  PubMed  Google Scholar 

  18. Sun SY, Yue P, Zhou JY, Wang Y, Choi Kim HR, Lotan R, Wu GS (2001) Overexpression of BCL2 blocks TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human lung cancer cells. Biochem Biophys Res Commun 280:788–797

    Article  CAS  PubMed  Google Scholar 

  19. Mahalingam D, Szegezdi E, Keane M, de Jong S, Samali A (2009) TRAIL receptor signalling and modulation: Are we on the right TRAIL? Cancer Treat Rev 35:280–288

    Article  CAS  PubMed  Google Scholar 

  20. Hori T, Kondo T, Kanamori M, Tabuchi Y, Ogawa R, Zhao QL, Ahmed K, Yasuda T, Seki S, Suzuki K, Kimura T (2010) Ionizing radiation enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through up-regulations of death receptor 4 (DR4) and death receptor 5 (DR5) in human osteosarcoma cells. J Orthop Res 28:739–745

    CAS  PubMed  Google Scholar 

  21. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M (2002) Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 62:3603–3608

    CAS  PubMed  Google Scholar 

  22. Loebinger MR, Eddaoudi A, Davies D, Janes SM (2009) Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res 69:4134–4142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Alessandri G, Filippeschi S, Sinibaldi P, Mornet F, Passera P, Spreafico F, Cappa PM, Gullino PM (1987) Influence of gangliosides on primary and metastatic neoplastic growth in human and murine cells. Cancer Res 47:4243–4247

    CAS  PubMed  Google Scholar 

  24. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AG, Uhr JW, Terstappen LW (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10:6897–6904

    Article  PubMed  Google Scholar 

  25. Darido C, Buchert M, Pannequin J, Bastide P, Zalzali H, Mantamadiotis T, Bourgaux JF, Garambois V, Jay P, Blache P, Joubert D, Hollande F (2008) Defective claudin-7 regulation by Tcf-4 and Sox-9 disrupts the polarity and increases the tumorigenicity of colorectal cancer cells. Cancer Res 68:4258–4268

    Article  CAS  PubMed  Google Scholar 

  26. Ou M, Wang XL, Xu R, Chang CW, Bull DA, Kim SW (2008) Novel biodegradable poly(disulfide amine)s for gene delivery with high efficiency and low cytotoxicity. Bioconjug Chem 19:626–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157–163

    Article  CAS  PubMed  Google Scholar 

  28. MacFarlane M, Ahmad M, Srinivasula SM, Fernandes-Alnemri T, Cohen GM, Alnemri ES (1997) Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J Biol Chem 272:25417–25420

    Article  CAS  PubMed  Google Scholar 

  29. Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277:818–821

    Article  CAS  PubMed  Google Scholar 

  30. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM (1997) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277:815–818

    Article  CAS  PubMed  Google Scholar 

  31. Wu GS, Burns TF, Zhan Y, Alnemri ES, El-Deiry WS (1999) Molecular cloning and functional analysis of the mouse homologue of the KILLER/DR5 tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor. Cancer Res 59:2770–2775

    CAS  PubMed  Google Scholar 

  32. Ouyang W, Yang C, Liu Y, Xiong J, Zhang J, Zhong Y, Zhang G, Zhou F, Zhou Y, Xie C (2011) Redistribution of DR4 and DR5 in lipid rafts accounts for the sensitivity to TRAIL in NSCLC cells. Int J Oncol 39:1577–1586

    CAS  PubMed  Google Scholar 

  33. Grisendi G, Bussolari R, Cafarelli L, Petak I, Rasini V, Veronesi E, De Santis G, Spano C, Tagliazzucchi M, Barti-Juhasz H, Scarabelli L, Bambi F, Frassoldati A, Rossi G, Casali C, Morandi U, Horwitz EM, Paolucci P, Conte P, Dominici M (2010) Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res 70:3718–3729

    Article  CAS  PubMed  Google Scholar 

  34. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. French LE, Tschopp J (1999) The TRAIL to selective tumor death. Nat Med 5:146–147

    Article  CAS  PubMed  Google Scholar 

  36. Chae SY, Kim TH, Park K, Jin CH, Son S, Lee S, Youn YS, Kim K, Jo DG, Kwon IC, Chen X, Lee KC (2010) Improved antitumor activity and tumor targeting of NH(2)-terminal-specific PEGylated tumor necrosis factor-related apoptosis-inducing ligand. Mol Cancer Ther 9:1719–1729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Mirandola P, Sponzilli I, Gobbi G, Marmiroli S, Rinaldi L, Binazzi R, Piccari GG, Ramazzotti G, Gaboardi GC, Cocco L, Vitale M (2006) Anticancer agents sensitize osteosarcoma cells to TNF-related apoptosis-inducing ligand downmodulating IAP family proteins. Int J Oncol 28:127–133

    CAS  PubMed  Google Scholar 

  38. Matsui TA, Sowa Y, Yoshida T, Murata H, Horinaka M, Wakada M, Nakanishi R, Sakabe T, Kubo T, Sakai T (2006) Sulforaphane enhances TRAIL-induced apoptosis through the induction of DR5 expression in human osteosarcoma cells. Carcinogenesis 27:1768–1777

    Article  CAS  PubMed  Google Scholar 

  39. Moon MH, Jeong JK, Seo JS, Seol JW, Lee YJ, Xue M, Jackson CJ, Park SY (2011) Bisphosphonate enhances TRAIL sensitivity to human osteosarcoma cells via death receptor 5 upregulation. Exp Mol Med 43:138–145

    Article  CAS  PubMed  Google Scholar 

  40. Yan S, Qu X, Xu C, Zhu Z, Zhang L, Xu L, Song N, Teng Y, Liu Y (2012) Down-regulation of Cbl-b by bufalin results in up-regulation of DR4/DR5 and sensitization of TRAIL-induced apoptosis in breast cancer cells. J Cancer Res Clin Oncol 138:1279–1289

    Article  CAS  PubMed  Google Scholar 

  41. Qu J, Zhao M, Teng Y, Zhang Y, Hou K, Jiang Y, Yang X, Shang H, Qu X, Liu Y (2011) Interferon-α sensitizes human gastric cancer cells to TRAIL-induced apoptosis via activation of the c-CBL-dependent MAPK/ERK pathway. Cancer Biol Ther 12:494–502

    Article  CAS  PubMed  Google Scholar 

  42. Sadalla JC, Lourenço SV, Sotto MN, Baracat EC, Carvalho JP (2011) Claudin and p53 expression in vulvar lichen sclerosus and squamous-cell carcinoma. J Clin Pathol 64:853–857

    Article  PubMed  Google Scholar 

  43. Kulawiec M, Safina A, Desouki MM, Still I, Matsui S, Bakin A, Singh KK (2008) Tumorigenic transformation of human breast epithelial cells induced by mitochondrial DNA depletion. Cancer Biol Ther 7:1732–1743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Yu R, Deedigan L, Albarenque SM, Mohr A, Zwacka RM (2013) Delivery of sTRAIL variants by MSCs in combination with cytotoxic drug treatment leads to p53-independent enhanced antitumor effects. Cell Death Dis 4:e503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Park EJ, Choi KS, Yoo YH, Kwon TK (2013) Nutlin-3, a small-molecule MDM2 inhibitor, sensitizes Caki cells to TRAIL-induced apoptosis through p53-mediated PUMA upregulation and ROS-mediated DR5 upregulation. Anticancer Drugs 24:260–269

    Article  CAS  PubMed  Google Scholar 

  46. Tang H, Sun Y, Shi Z, Huang H, Fang Z, Chen J, Xiu Q, Li B (2013) YKL-40 induces IL-8 expression from bronchial epithelium via MAPK (JNK and ERK) and NF-κB pathways, causing bronchial smooth muscle proliferation and migration. J Immunol 190:438–446

    Article  CAS  PubMed  Google Scholar 

  47. Maza PK, Oliveira P, Toledo MS, Paula DM, Takahashi HK, Straus AH, Suzuki E (2012) Paracoccidioides brasiliensis induces secretion of IL-6 and IL-8 by lung epithelial cells. Modulation of host cytokine levels by fungal proteases. Microbes Infect 14:1077–1085

    Article  CAS  PubMed  Google Scholar 

  48. Yin J, Yu C, Yang Z, He JL, Chen WJ, Liu HZ, Li WM, Liu HT, Wang YX (2011) Tetramethylpyrazine inhibits migration of SKOV3 human ovarian carcinoma cells and decreases the expression of interleukin-8 via the ERK1/2, p38 and AP-1 signaling pathways. Oncol Rep 26:671–679

    CAS  PubMed  Google Scholar 

  49. Holten-Andersen MN, Hansen U, Brünner N, Nielsen HJ, Illemann M, Nielsen BS (2005) Localization of tissue inhibitor of metalloproteinases 1 (TIMP-1) in human colorectal adenoma and adenocarcinoma. Int J Cancer 113:198–206

    Article  CAS  PubMed  Google Scholar 

  50. Bommarito A, Richiusa P, Carissimi E, Pizzolanti G, Rodolico V, Zito G, Criscimanna A, Di Blasi F, Pitrone M, Zerilli M, Amato MC, Spinelli G, Carina V, Modica G, Latteri MA, Galluzzo A, Giordano C (2011) BRAFV600E mutation, TIMP-1 upregulation, and NF-κB activation: closing the loop on the papillary thyroid cancer trilogy. Endocr Relat Cancer 18:669–685

    Article  CAS  PubMed  Google Scholar 

  51. Groblewska M, Mroczko B, Kozlowski M, Niklinski J, Laudanski J, Szmitkowski M (2012) Serum matrix metalloproteinase 2 and tissue inhibitor of matrix metalloproteinases 2 in esophageal cancer patients. Folia Histochem Cytobiol 50:590–598

    Article  PubMed  Google Scholar 

  52. Hałoń A, Nowak-Markwitz E, Donizy P, Matkowski R, Maciejczyk A, Gansukh T, Györffy B, Spaczyński M, Zabel M, Lage H, Surowiak P (2012) Enhanced immunoreactivity of TIMP-2 in the stromal compartment of tumor as a marker of favorable prognosis in ovarian cancer patients. J Histochem Cytochem 60:491–501

    PubMed  Google Scholar 

  53. Tsubaki M, Satou T, Itoh T, Imano M, Ogaki M, Yanae M, Nishida S (2012) Reduction of metastasis, cell invasion, and adhesion in mouse osteosarcoma by YM529/ONO-5920-induced blockade of the Ras/MEK/ERK and Ras/PI3K/Akt pathway. Toxicol Appl Pharmacol 259:402–410

    Article  CAS  PubMed  Google Scholar 

  54. Gasent Blesa JM, Alberola Candel V, Esteban González E, Vidal Martínez J, Gisbert Criado R, Provencio Pulla M, Laforga Canales J, Pachmann K (2008) Circulating tumor cells in breast cancer: methodology and clinical repercussions. Clin Transl Oncol 10:399–406

    Article  CAS  PubMed  Google Scholar 

  55. Goodman OB Jr, Fink LM, Symanowski JT, Wong B, Grobaski B, Pomerantz D, Ma Y, Ward DC, Vogelzang NJ (2009) Circulating tumor cells in patients with castration-resistant prostate cancer baseline values and correlation with prognostic factors. Cancer Epidemiol Biomarkers Prev 18:1904–1913

    Article  CAS  PubMed  Google Scholar 

  56. Ignatiadis M, Xenidis N, Perraki M, Apostolaki S, Politaki E, Kafousi M, Stathopoulos EN, Stathopoulou A, Lianidou E, Chlouverakis G, Sotiriou C, Georgoulias V, Mavroudis D (2007) Different prognostic value of cytokeratin-19 mRNA positive circulating tumor cells according to estrogen receptor and HER2 status in early-stage breast cancer. J Clin Oncol 25:5194–5202

    Article  PubMed  Google Scholar 

  57. Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, Picus J, Morse M, Mitchell E, Miller MC, Doyle GV, Tissing H, Terstappen LW, Meropol NJ (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 26:3213–3221

    Article  PubMed  Google Scholar 

  58. de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, Doyle GV, Terstappen LW, Pienta KJ, Raghavan D (2008) Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 14:6302–6309

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Jin-Jin Wang for providing mesenchymal stem cells.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pu Xia.

Additional information

Pu Xia and Wei Wang contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, P., Wang, W. & Bai, Y. Claudin-7 suppresses the cytotoxicity of TRAIL-expressing mesenchymal stem cells in H460 human non-small cell lung cancer cells. Apoptosis 19, 491–505 (2014). https://doi.org/10.1007/s10495-013-0938-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0938-z

Keywords

Navigation