Skip to main content
Log in

(E)-2,4-Bis(p-hydroxyphenyl)-2-butenal inhibits tumor growth via suppression of NF-κB and induction of death receptor 6

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The Maillard reaction products are known to be effective in chemoprevention. Here, we focused on the anti-cancer effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal on in vitro and in vivo colon cancer. We analysed the anti-cancer activity of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal on colon cancer cells by using cell cycle and apoptosis analysis. To elucidate it’s mechanism, NF-κB DNA binding activity, docking model as well as pull-down assay. Further, a xenograft model of colon cancer was studied to test the in vivo effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal. (E)-2,4-Bis(p-hydroxyphenyl)-2-butenal inhibited colon cancer cells (SW620 and HCT116) growth followed by induction of apoptosis in a concentration-dependent manner via down-regulation of NF-κB activity. In docking model as well as pull-down assay, (E)-2,4-bis(p-hydroxyphenyl)-2-butenal directly binds to three amino acid residues of IKKβ, thereby inhibited IKKβ activity in addition to induction of death receptor 6 (DR6) as well as their target apoptotic genes. Finally, (E)-2,4-bis(p-hydroxyphenyl)-2-butenal suppressed anchorage-independent cancer cell growth, and tumor growth in xenograft model accompanied with apoptosis through inhibition of IKKβ/NF-κB activity, and overexpression of DR6. These results suggest that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal inhibits colon cancer cell growth through inhibition of IKKβ/NF-κB activity and induction of DR6 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NF-κB:

Nuclear transcription factor-κB

STAT:

Signal transducers and activators of transcription

DR:

Dearth receptor

TNF-α:

Tumor necrosis factor-α

References

  1. Ullman TA, Itzkowitz SH (2011) Intestinal inflammation and cancer. Gastroenterology 140:1807–1816

    Article  CAS  PubMed  Google Scholar 

  2. Lonkar P, Dedon PC (2011) Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates. Int J Cancer 128:1999–2009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kryston TB, Georgiev AB, Pissis P, Georgakilas AG (2011) Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 711:193–201

    Article  CAS  PubMed  Google Scholar 

  4. Lee YJ, Lee YM, Lee CK, Jung JK, Han SB, Hong JT (2011) Therapeutic applications of compounds in the Magnolia family. Pharmacol Ther 130:157–176

    Article  CAS  PubMed  Google Scholar 

  5. Lee YJ, Choi DY, Choi IS, Han JY, Jeong HS, Han SB, Oh KW, Hong JT (2011) Inhibitory effect of a tyrosine-fructose Maillard reaction product, 2,4-bis(p-hydroxyphenyl)-2-butenal on amyloid-beta generation and inflammatory reactions via inhibition of NF-kappaB and STAT3 activation in cultured astrocytes and microglial BV-2 cells. J Neuroinflammation 8:132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Summa C, McCourt J, Cammerer B, Fiala A, Probst M, Kun S, Anklam E, Wagner KH (2008) Radical scavenging activity, anti-bacterial and mutagenic effects of cocoa bean Maillard reaction products with degree of roasting. Mol Nutr Food Res 52:342–351

    Article  CAS  PubMed  Google Scholar 

  7. Monti SM, Ritieni A, Graziani G, Randazzo G, Mannina L, Segre AL, Fogliano V (1999) LC/MS analysis and antioxidative efficiency of Maillard reaction products from a lactose-lysine model system. J Agric Food Chem 47:1506–1513

    Article  CAS  PubMed  Google Scholar 

  8. Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, Forman S, Jove R, Pardoll DM, Yu H (2009) Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell 15:283–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Yu LL, Yu HG, Yu JP, Luo HS, Xu XM, Li JH (2004) Nuclear factor-kappaB p65 (RelA) transcription factor is constitutively activated in human colorectal carcinoma tissue. World J Gastroenterol 10:3255–3260

    CAS  PubMed  Google Scholar 

  10. Ghosh S, Karin M (2002) Missing pieces in the NF-kappaB puzzle. Cell 109:S81–S96

    Article  CAS  PubMed  Google Scholar 

  11. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663

    Article  CAS  PubMed  Google Scholar 

  12. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296

    Article  CAS  PubMed  Google Scholar 

  13. Maeda S, Kamata H, Luo JL, Leffert H, Karin M (2005) IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121:977–990

    Article  CAS  PubMed  Google Scholar 

  14. Luo JL, Kamata H, Karin M (2005) IKK/NF-kappaB signaling: balancing life and death—a new approach to cancer therapy. J Clin Invest 115:2625–2632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. O’Donovan TR, O’Sullivan GC, McKenna SL (2011) Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy 7:509–524

    Article  PubMed  Google Scholar 

  16. Kang YJ, Kim IY, Kim EH, Yoon MJ, Kim SU, Kwon TK, Choi KS (2011) Paxilline enhances TRAIL-mediated apoptosis of glioma cells via modulation of c-FLIP, survivin and DR5. Exp Mol Med 43:24–34

    Article  CAS  PubMed  Google Scholar 

  17. Inoue N, Matsuda F, Goto Y, Manabe N (2011) Role of cell-death ligand-receptor system of granulosa cells in selective follicular atresia in porcine ovary. J Reprod Dev 57:169–175

    Article  CAS  PubMed  Google Scholar 

  18. Sayers TJ (2011) Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunol Immunother 60:1173–1180

    Article  CAS  PubMed  Google Scholar 

  19. Sun SY (2011) Understanding the role of the death receptor 5/FADD/caspase-8 death signaling in cancer metastasis. Mol Cell Pharmacol 3:31–34

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Tang Y, Li X, Liu Z, Simoneau AR, Xie J, Zi X (2010) Flavokawain B, a kava chalcone, induces apoptosis via up-regulation of death-receptor 5 and Bim expression in androgen receptor negative, hormonal refractory prostate cancer cell lines and reduces tumor growth. Int J Cancer 127:1758–1768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Schneider P, Thome M, Burns K, Bodmer JL, Hofmann K, Kataoka T, Holler N, Tschopp J (1997) TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB. Immunity 7:831–836

    Article  CAS  PubMed  Google Scholar 

  22. Kreuz S, Siegmund D, Scheurich P, Wajant H (2001) NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 21:3964–3973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kasof GM, Lu JJ, Liu D, Speer B, Mongan KN, Gomes BC, Lorenzi MV (2001) Tumor necrosis factor-alpha induces the expression of DR6, a member of the TNF receptor family, through activation of NF-kappaB. Oncogene 20:7965–7975

    Article  CAS  PubMed  Google Scholar 

  24. Ban JO, Oh JH, Hwang BY, Moon DC, Jeong HS, Lee S, Kim S, Lee H, Kim KB, Han SB, Hong JT (2009) Inflexinol inhibits colon cancer cell growth through inhibition of nuclear factor-kappaB activity via direct interaction with p50. Mol Cancer Ther 8:1613–1624

    Article  CAS  PubMed  Google Scholar 

  25. Shim JH, Choi HS, Pugliese A, Lee SY, Chae JI, Choi BY, Bode AM, Dong Z (2008) Epigallocatechin gallate regulates CD3-mediated T cell receptor signaling in leukemia through the inhibition of ZAP-70 kinase. J Biol Chem 283:28370–28379

    Article  CAS  PubMed  Google Scholar 

  26. Huang S, Sinicrope FA (2010) Sorafenib inhibits STAT3 activation to enhance TRAIL-mediated apoptosis in human pancreatic cancer cells. Mol Cancer Ther 9:742–750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Jin HR, Jin X, Dat NT, Lee JJ (2011) Cucurbitacin B suppresses the transactivation activity of RelA/p65. J Cell Biochem 112:1643–1650

    Article  CAS  PubMed  Google Scholar 

  28. Nakaya A, Sagawa M, Muto A, Uchida H, Ikeda Y, Kizaki M (2011) The gold compound auranofin induces apoptosis of human multiple myeloma cells through both down-regulation of STAT3 and inhibition of NF-kappaB activity. Leuk Res 35:243–249

    Article  CAS  PubMed  Google Scholar 

  29. Prakobwong S, Gupta SC, Kim JH, Sung B, Pinlaor P, Hiraku Y, Wongkham S, Sripa B, Pinlaor S, Aggarwal BB (2011) Curcumin suppresses proliferation and induces apoptosis in human biliary cancer cells through modulation of multiple cell signaling pathways. Carcinogenesis 32:1372–1380

    Article  CAS  PubMed  Google Scholar 

  30. Sethi G, Tergaonkar V (2009) Potential pharmacological control of the NF-kappaB pathway. Trends Pharmacol Sci 30:313–321

    Article  CAS  PubMed  Google Scholar 

  31. Yin MJ, Yamamoto Y, Gaynor RB (1998) The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396:77–80

    Article  CAS  PubMed  Google Scholar 

  32. Prasad S, Ravindran J, Sung B, Pandey MK, Aggarwal BB (2010) Garcinol potentiates TRAIL-induced apoptosis through modulation of death receptors and antiapoptotic proteins. Mol Cancer Ther 9:856–868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Chien SY, Wu YC, Chung JG, Yang JS, Lu HF, Tsou MF, Wood WG, Kuo SJ, Chen DR (2009) Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Hum Exp Toxicol 28:493–503

    Article  CAS  PubMed  Google Scholar 

  34. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Jo M, Park MH, Kollipara PS, An BJ, Song HS, Han SB, Kim JH, Song MJ, Hong JT (2012) Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol Appl Pharmacol 258:72–81

    Article  CAS  PubMed  Google Scholar 

  36. Kollipara PS, Jeong HS, Han SB, Hong JT (2013) E)-2,4-bis(p-hydroxyphenyl)-2-butenal has an antiproliferative effect on NSCLC cells induced by p38 MAPK-mediated suppression of NF-κB and up-regulation of TNFRSF10B (DR5. Br J Pharmacol 168:1471–1484

    Article  CAS  PubMed  Google Scholar 

  37. Zhang HP, Takayama K, Su B, Jiao XD, Li R, Wang JJ (2011) Effect of sunitinib combined with ionizing radiation on endothelial cells. J Radiat Res 52:1–8

    Article  PubMed  Google Scholar 

  38. Park SJ, Bijangi-Vishehsaraei K, Safa AR (2010) Selective TRAIL-triggered apoptosis due to overexpression of TRAIL death receptor 5 (DR5) in P-glycoprotein-bearing multidrug resistant CEM/VBL1000 human leukemia cells. Int J Biochem Mol Biol 1:90–100

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant by the Korea government (MEST; MRC, 2012-0029480), and by the Ministry of Trade, Industry and Energy (MOTIE, 1415126993) through the fostering project of Osong Academy-Industry Convergence (BAIO).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Tae Hong.

Additional information

J. O. Ban and Y.-S. Jung contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Effect of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal on the expression of DRs and cancer cell growth in lung cancer cells. a The cells were treated with different concentrations (10–40 μg/ml) of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal at 37 °C for 12 h. Expression of death receptor 5 and 6 was detected by western blotting using specific antibodies. β-Actin protein was used as an internal control. Each blot is representative of three independent experimental results. b Cells were transfected with 100 nM DR5 and DR6 siRNA and treated with 30 μg/ml of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal, or cells were treated with 30 μg/ml of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal for 24 h. Cell viability was determined by direct cell counting using trypan blue as described in “Materials and methods” section. Values are the mean ± SD of three experiments, each performed in triplicate (PPTX 371 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ban, J.O., Jung, YS., Kim, D.H. et al. (E)-2,4-Bis(p-hydroxyphenyl)-2-butenal inhibits tumor growth via suppression of NF-κB and induction of death receptor 6. Apoptosis 19, 165–178 (2014). https://doi.org/10.1007/s10495-013-0903-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0903-x

Keywords

Navigation