Skip to main content
Log in

hPNAS-4 inhibits proliferation through S phase arrest and apoptosis: underlying action mechanism in ovarian cancer cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

PNAS-4, a novel pro-apoptotic gene, was activated during the early response to DNA damage. Previous studies have shown that hPNAS-4 can inhibit tumor growth when over-expressed in ovarian cancer cells. However, the underlying action mechanism remains elusive. In this work, we found that hPNAS-4 expression was significantly increased in SKOV3 cells when exposed to cisplatin, methyl methanesulfonate or mitomycin C, and that its overexpression could induce proliferation inhibition, S phase arrest and apoptosis in A2780s and SKOV3 ovarian cancer cells. The S phase arrest caused by hPNAS-4 was associated with up-regulation of p21. p21 is p53-dispensable and correlates with activation of ERK, and activation of the Cdc25A-Cdk2-Cyclin E/Cyclin A pathway, while the pro-apoptotic effects of hPNAS-4 were mediated by activation of caspase-9 and -3 other than caspase-8, and accompanied by release of AIF, Smac and cytochrome c into the cytosol. Taken together, these data suggest a new mechanism by which hPNAS-4 inhibits proliferation of ovarian cancer cells by inducing S phase arrest and apoptosis via activation of Cdc25A-Cdk2-Cyclin E/Cyclin A axis and mitochondrial dysfunction-mediated caspase-dependent and -independent apoptotic pathways. To our knowledge, we provide the first molecular evidence for the potential application of hPNAS-4 as a novel target in ovarian cancer gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

hPNAS-4:

Human PNAS-4

pc3.1:

pcDNA3.1 expression plasmid

pc3.1-hPNAS-4:

pcDNA3.1 plasmid encoding Human PNAS-4 gene

ATCC:

American Type Culture Collection

DMEM:

Dulbecco’s modified Eagle’s medium

RPMI 1640:

Roswell Park Memorial Institute 1640 medium

MMS:

Methyl methanesulfonate

MMC:

Mitomycin C

FBS:

Fetal bovine serum

EdU:

5-Ethyl-2′-deoxyuridine

CDK:

Cyclin-dependent kinase

Cyt C:

Cytochrome C

Smac:

Second mitochondria-derived activator of caspase

AIF:

Apoptosis induced factor

Cox-IV:

Cytochrome oxidase subunit IV

References

  1. Sherman-Baust CA, Becker KG, Wood WH III, Zhang Y, Morin PJ (2011) Gene expression and pathway analysis of ovarian cancer cells selected for resistance to cisplatin, paclitaxel, or doxorubicin. J Ovarian Res 4:21

    Article  PubMed  CAS  Google Scholar 

  2. Yu J, Zhang L (2004) Apoptosis in human cancer cells. Curr Opin Oncol 16:19–24

    Article  PubMed  Google Scholar 

  3. Yan F, Ruan X, Yang H, Yao S, Zhao X, Gou L et al (2010) Identification, characterization, and effects of Xenopus laevis PNAS-4 gene on embryonic development. J Biomed Biotechnol 2010:134764

    Article  PubMed  Google Scholar 

  4. Forrest MS, Lan Q, Hubbard AE, Zhang L, Vermeulen R, Zhao X et al (2005) Discovery of novel biomarkers by microarray analysis of peripheral blood mononuclear cell gene expression in benzene-exposed workers. Environ Health Perspect 113:801–807

    Article  PubMed  CAS  Google Scholar 

  5. Santin AD, Zhan F, Bignotti E, Siegel ER, Cané S, Bellone S et al (2005) Gene expression profiles of primary HPV16-and HPV18-infected early stage cervical cancers and normal cervical epithelium: identification of novel candidate molecular markers for cervical cancer diagnosis and therapy. Virology 331:269–291

    Article  PubMed  CAS  Google Scholar 

  6. Best CJ, Gillespie JW, Yi Y, Chandramouli GV, Perlmutter MA, Gathright Y et al (2005) Molecular alterations in primary prostate cancer after androgen ablation therapy. Clin Cancer Res 11(19 Pt 1):6823–6834

    Article  PubMed  CAS  Google Scholar 

  7. Yuan Z, Liu H, Yan F, Wang Y, Gou L, Nie C et al (2009) Improved therapeutic efficacy against murine carcinoma by combining honokiol with gene therapy of PNAS-4, a novel pro-apoptotic gene. Cancer Sci 100:1757–1766

    Article  PubMed  CAS  Google Scholar 

  8. Yan F, Gou L, Yang J, Chen L, Tong A, Tang M et al (2009) A novel pro-apoptosis gene PNAS4 that induces apoptosis in A549 human lung adenocarcinoma cells and inhibits tumor growth in mice. Biochimie 91:502–507

    Article  PubMed  CAS  Google Scholar 

  9. Hou S, Zhao Z, Yan F, Chen X, Deng H, Wang Y et al (2009) Genetic transfer of PNAS-4 induces apoptosis and enhances sensitivity to gemcitabine in lung cancer. Cell Biol Int 33:276–282

    Article  PubMed  CAS  Google Scholar 

  10. Yang F, Li Z, Deng H, Yang H, Yan F, Qian Z et al (2008) Efficient inhibition of ovarian cancer growth and prolonged survival by transfection with a novel pro-apoptotic gene, hPNAS-4, in a mouse model. Oncology 75:137–144

    Article  PubMed  CAS  Google Scholar 

  11. Baluchamy S, Ravichandran P, Periyakaruppan A, Ramesh V, Hall JC, Zhang Y et al (2010) Induction of cell death through alteration of oxidants and antioxidants in lung epithelial cells exposed to high energy protons. J Biol Chem 285:24769–24774

    Article  PubMed  CAS  Google Scholar 

  12. Chen KF, Yeh PY, Yeh KH, Lu YS, Huang SY, Cheng AL (2008) Down-regulation of phospho-Akt is a major molecular determinant of bortezomib-induced apoptosis in hepatocellular carcinoma cells. Cancer Res 68:6698–6707

    Article  PubMed  CAS  Google Scholar 

  13. Lin C, Zhao X, Li L, Liu H, Cao K, Wan Y et al (2012) NOXA-induced alterations in the Bax/Smac axis enhance sensitivity of ovarian cancer cells to cisplatin. PLoS One 7:e36722

    Article  PubMed  CAS  Google Scholar 

  14. Xu X, Hamhouyia F, Thomas SD, Burke TJ, Girvan AC, McGregor WG et al (2001) Inhibition of DNA replication and induction of S phase cell cycle arrest by G-rich oligonucleotides. J Biol Chem 276:43221–43230

    Article  PubMed  CAS  Google Scholar 

  15. Wei Y, Zhao X, Kariya Y, Fukata H, Teshigawara K, Uchida A (1994) Induction of apoptosis by quercetin: involvement of heat shock protein. Cancer Res 54:4952–4957

    PubMed  CAS  Google Scholar 

  16. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci USA 105:2415–2420

    Article  PubMed  CAS  Google Scholar 

  17. Sinkkonen ST, Chai R, Jan TA, Hartman BH, Laske RD, Gahlen F et al (2011) Intrinsic regenerative potential of murine cochlear supporting cells. Sci Rep 1:26

    Article  PubMed  Google Scholar 

  18. Ruiz-Vela A, Opferman JT, Cheng EHY, Korsmeyer SJ (2005) Proapoptotic BAX and BAK control multiple initiator caspases. EMBO Rep 6:379–385

    Article  PubMed  CAS  Google Scholar 

  19. Yuan Z, Cao K, Lin C, Li L, Liu H, Zhao X et al (2011) The p53 upregulated modulator of apoptosis (PUMA) chemosensitizes intrinsically resistant ovarian cancer cells to cisplatin by lowering the threshold set by BcI-xL and McI-1. Mol Med 17:1262–1274

    Article  PubMed  CAS  Google Scholar 

  20. Zhou B, Yan H, Li Y, Wang R, Chen K, Zhou Z et al (2012) PNAS-4 expression and its relationship to p53 in colorectal cancer. Mol Biol Rep 39:243–249

    Article  PubMed  CAS  Google Scholar 

  21. Gallardo D, Drazan KE, McBride WH (1996) Adenovirus-based transfer of wild-type p53 gene increases ovarian tumor radiosensitivity. Cancer Res 56:4891–4893

    PubMed  CAS  Google Scholar 

  22. Sasaki H, Sheng YL, Kotsuji F, Tsang BK (2000) Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res 60:5659–5666

    PubMed  CAS  Google Scholar 

  23. Wade Harper J, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    Article  Google Scholar 

  24. Gartel AL, Tyner AL (2002) The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 1:639–649

    PubMed  CAS  Google Scholar 

  25. Beier F, Taylor AC, LuValle P (1999) The Raf-1/MEK/ERK pathway regulates the expression of the p21Cip1/Waf1 gene in chondrocytes. J Biol Chem 274:30273–30279

    Article  PubMed  CAS  Google Scholar 

  26. Kim GY, Mercer SE, Ewton DZ, Yan Z, Jin K, Friedman E (2002) The stress-activated protein kinases p38 alpha and JNK1 stabilize p21(Cip1) by phosphorylation. J Biol Chem 277:29792–29802

    Article  PubMed  CAS  Google Scholar 

  27. Park KS, Ahn Y, Kim JA, Yun MS, Seong BL, Choi KY (2002) Extracellular zinc stimulates ERK-dependent activation of p21(Cip/WAF1) and inhibits proliferation of colorectal cancer cells. Br J Pharmacol 137:597–607

    Article  PubMed  CAS  Google Scholar 

  28. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS et al (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273:18623–18632

    Article  PubMed  CAS  Google Scholar 

  29. Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR (1995) A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 92(17):7686–7689

    Article  PubMed  CAS  Google Scholar 

  30. Hassepass I, Voit R, Hoffmann I (2003) Phosphorylation at serine 75 is required for UV-mediated degradation of human Cdc25A phosphatase at the S-phase checkpoint. J Biol Chem 278:29824–29829

    Article  PubMed  CAS  Google Scholar 

  31. Filippov V, Filippova M, Duerksen-Hughes PJ (2007) The early response to DNA damage can lead to activation of alternative splicing activity resulting in CD44 splice pattern changes. Cancer Res 67:7621–7630

    Article  PubMed  CAS  Google Scholar 

  32. Fan G, Ma X, Wong P, Rodrigues C, Steer C (2004) p53 dephosphorylation and p21(Cip1/Waf1) translocation correlate with caspase-3 activation in TGF-beta1-induced apoptosis of HuH-7 cells. Apoptosis 9:211–221

    Article  PubMed  CAS  Google Scholar 

  33. Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J et al (2000) Rapid destruction of human Cdc25A in response to DNA damage. Science 288:1425–1429

    Article  PubMed  CAS  Google Scholar 

  34. Xiao Z, Chen Z, Gunasekera AH, Sowin TJ, Rosenberg SH, Fesik S et al (2003) Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem 278:21767–21773

    Article  PubMed  CAS  Google Scholar 

  35. Sørensen CS, Syljuåsen RG, Falck J, Schroeder T, Rönnstrand L, Khanna KK et al (2003) Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 3:247–258

    Article  PubMed  Google Scholar 

  36. Eastman A (2004) Cell cycle checkpoints and their impact on anticancer therapeutic strategies. J Cell Biochem 91:223–231

    Article  PubMed  CAS  Google Scholar 

  37. Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M (2010) Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 79:89–130

    Article  PubMed  CAS  Google Scholar 

  38. Yeo EJ, Ryu JH, Chun YS, Cho YS, Jang IJ, Cho HS et al (2006) YC-1 induces S cell cycle arrest and apoptosis by activating checkpoint kinases. Cancer Res 66:6345–6352

    Article  PubMed  CAS  Google Scholar 

  39. Tan Y, Dourdin N, Wu C, De Veyra T, Elce JS, Greer PA (2006) Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J Biol Chem 281:16016–16024

    Article  PubMed  CAS  Google Scholar 

  40. Akasaka Y, Ito K, Fujita K, Komiyama K, Ono I, Ishikawa Y et al (2005) Activated caspase expression and apoptosis increase in keloids: cytochrome c release and caspase-9 activation during the apoptosis of keloid fibroblast lines. Wound Repair Regen 13:373–382

    Article  PubMed  Google Scholar 

  41. Ding H, Han C, Zhu J, Chen CS, D’Ambrosio SM (2005) Celecoxib derivatives induce apoptosis via the disruption of mitochondrial membrane potential and activation of caspase 9. Int J Cancer 113:803–810

    Article  PubMed  CAS  Google Scholar 

  42. Kiss T (2010) Apoptosis and its functional significance in molluscs. Apoptosis 15:313–321

    Article  PubMed  Google Scholar 

  43. Giansanti V, Torriglia A, Scovassi AI (2011) Conversation between apoptosis and autophagy:“Is it your turn or mine?”. Apoptosis 16:321–333

    Article  PubMed  Google Scholar 

  44. Jin Z, Li Y, Pitti R, Lawrence D, Pham VC, Lill JR et al (2009) Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137:721–735

    Article  PubMed  CAS  Google Scholar 

  45. Gorvel L, Al Moussawi K, Ghigo E, Capo C, Mege JL, Desnues B (2010) Tropheryma whipplei, the Whipple’s disease bacillus, induces macrophage apoptosis through the extrinsic pathway. Cell Death Dis 1:e34

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Yong-qiu Mao for her technical support. This work was supported by Natural Science Foundation of China (30900744).

Conflict of interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Yuan.

Additional information

Lei Li and Den-bang Chen contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Chen, Db., Lin, C. et al. hPNAS-4 inhibits proliferation through S phase arrest and apoptosis: underlying action mechanism in ovarian cancer cells. Apoptosis 18, 467–479 (2013). https://doi.org/10.1007/s10495-012-0797-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0797-z

Keywords

Navigation