Skip to main content

Advertisement

Log in

Detection and quantification of farnesol-induced apoptosis in difficult primary cell cultures by TaqMan protein assay

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis can be detected reliably by assaying for cleaved caspase-3, for which active caspase-3 antibodies are used in several methods, such as immunocytochemistry, enzyme-linked immunosorbent assay, and western blot. In this study, we used TaqMan protein assay (TPA), a novel method for protein detection and quantification that detects proteins by amplification of substitute DNA templates. TPA uses antibodies and proximity ligation for quantitative real-time PCR. Meningiomas are primarily benign intracranial tumors. Primary cell cultures of meningiomas are often unsuitable for sensitive protein detection methods. We optimized a TPA to detect active caspase-3 and evaluated its ability to detect farnesol-induced apoptosis in primary meningioma cells. The specificity and sensitivity of the inactive and active caspase-3 assay were determined using recombinant caspase-3. Apoptosis was induced in meningiomas in the presence of 0.2 μM farnesol as shown by immunocytochemistry of single-stranded DNA. Also, viability decreased by over 90 % after treatment with 1.2 μM farnesol for 24 h. The TPA detected a significant increase in active caspase-3 after treatment with 2 and 4 μM farnesol for 2 h, which could not be detected using standard methods such as western blot and immunofluorescence. In addition, TPA determined that meningiomas show disparate sensitivities to low concentrations of farnesol. Caspase-3 expression fell significantly in cells that were treated with 0.25 μM farnesol for 2 h. Further, by TPA, active caspase-3 peaked after 2 h and declined with longer incubation times. This study demonstrates that cleaved caspase-3 is detected and quantified reliably in meningiomas by TPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776. doi:10.1038/35037710

    Article  PubMed  CAS  Google Scholar 

  2. Fulda S (2009) Tumor resistance to apoptosis. Int J Cancer 124(3):511–515. doi:10.1002/ijc.24064

    Article  PubMed  CAS  Google Scholar 

  3. Fredriksson S, Dixon W, Ji H, Koong AC, Mindrinos M, Davis RW (2007) Multiplexed protein detection by proximity ligation for cancer biomarker validation. Nat Methods 4(4):327–329. doi:10.1038/nmeth1020

    PubMed  CAS  Google Scholar 

  4. Louis D, Ohgaki H, Wiestler O, Cavenee W, Burger P, Jouvet A, Scheithauer B, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. doi:10.1007/s00401-007-0243-4

    Article  PubMed  Google Scholar 

  5. Riemenschneider MJ, Perry A, Reifenberger G (2006) Histological classification and molecular genetics of meningiomas. Lancet Neurol 5(12):1045–1054. doi:10.1016/s1474-4422(06)70625-1

    Article  PubMed  CAS  Google Scholar 

  6. Ragel B, Couldwell W, Gillespie D, Wendland M, Whang K, Jensen R (2008) A comparison of the cell lines used in meningioma research. Surg Neurol 70(3):295–307. doi:10.1016/j.surneu.2007.06.031

    Article  PubMed  Google Scholar 

  7. Pallini R, Casalbore P, Mercanti D, Maggiano N, Larocca LM (2000) Phenotypic change of human cultured meningioma cells. J Neurooncol 49(1):9–17. doi:10.1023/a:1006436903976

    Article  PubMed  CAS  Google Scholar 

  8. Joo JH, Jetten AM (2010) Molecular mechanisms involved in farnesol-induced apoptosis. Cancer Lett 287(2):123–135. doi:10.1016/j.canlet.2009.05.015

    Article  PubMed  CAS  Google Scholar 

  9. Yaguchi M, Miyazawa K, Katagiri T, Nishimaki J, Kizaki M, Tohyama K, Toyama K (1997) Vitamin K2 and its derivatives induce apoptosis in leukemia cells and enhance the effect of all-trans retinoic acid. Leukemia 11(6):779–787

    Article  PubMed  CAS  Google Scholar 

  10. Haug JS, Goldner CM, Yazlovitskayaa EM, Voziyana PA, Melnykovych G (1994) Directed cell killing (apoptosis) in human lymphoblastoid cells incubated in the presence of farnesol: effect of phosphatidylcholine. Biochim Biophys Acta 1223(1):133–140

    Article  PubMed  CAS  Google Scholar 

  11. Miquel K, Pradines A, Tercé F, Selmi S, Favre G (1998) Competitive inhibition of choline phosphotransferase by geranylgeraniol and farnesol inhibits phosphatidylcholine synthesis and induces apoptosis in human lung adenocarcinoma A549 cells. J Biol Chem 273(40):8

    Article  Google Scholar 

  12. Burke YDSM, Roach SL, Sen SE, Crowell PL (1997) Inhibition of pancreatic cancer growth by the dietary isoprenoids farnesol and geraniol. Lipids 32(2):6

    Article  Google Scholar 

  13. Lee WH (1990) Characterization of a newly established malignant meningioma cell line of the human brain: IOMM-Lee. Neurosurgery 27(3):389–395

    Article  PubMed  CAS  Google Scholar 

  14. Swartzman E, Shannon M, Lieu P, Chen SM, Mooney C, Wei E, Kuykendall J, Tan R, Settineri T, Egry L, Ruff D (2010) Expanding applications of protein analysis using proximity ligation and qPCR. Methods 50(4):23–26

    Article  Google Scholar 

  15. Püttmann S, Senner V, Braune S, Hillmann B, Exeler R, Rickert CH, Paulus W (2005) Establishment of a benign meningioma cell line by hTERT-mediated immortalization. Lab Invest 85(9):1163–1171. doi:10.1038/labinvest.3700307

    Article  PubMed  Google Scholar 

  16. Cargioli TG, Ugur HC, Ramakrishna N, Chan J, Black PM, Carroll RS (2007) Establishment of an in vivo meningioma model with human telomerase reverse transcriptase. Neurosurgery 60(4):750–760. doi:10.1227/01.neu.0000255397.00410.8f

    Article  PubMed  Google Scholar 

  17. Sioka C, Kyritsis AP (2008) Chemotherapy, hormonal therapy, and immunotherapy for recurrent meningiomas. J Neurooncol 92(1):1–6. doi:10.1007/s11060-008-9734-y

    Article  PubMed  Google Scholar 

  18. Miquel K, Pradines A, Favre G (1996) Farnesol and geranylgeraniol induce actin cytoskeleton disorganization and apoptosis in A549 lung adenocarcinoma cells. Biochem Biophys Res Commun 225(3):8

    Article  Google Scholar 

  19. Rioja A, Pizzey AR, Marson CM, Thomas NSB (2000) Preferential induction of apoptosis of leukaemic cells by farnesol. FEBS Lett 467(2):291–295

    Article  PubMed  CAS  Google Scholar 

  20. Adany I, Yazlovitskaya EM, Haug JS, Voziyan PA, Melnykovych G (1994) Differences in sensitivity to farnesol toxicity between neoplastically- and non-neoplastically-derived cells in culture. Cancer Lett 79(2):175–179. doi:10.1016/0304-3835(94)90257-7

    Article  PubMed  CAS  Google Scholar 

  21. Yazlovitskaya EM, Melnykovych G (1995) Selective farnesol toxicity and translocation of protein kinase C in neoplastic HeLa-S3 K and non-neoplastic CF-3 cells. Cancer Lett 88(2):179–183. doi:10.1016/0304-3835(94)03635-v

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Anita Lal (UCSF, USA) for kindly providing the IOMM-Lee cell line. Grant Support: Else Uebelmesser-Stiftung.

Conflict of interest

No potential conflicts of interest disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Pfister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfister, C., Pfrommer, H., Tatagiba, M.S. et al. Detection and quantification of farnesol-induced apoptosis in difficult primary cell cultures by TaqMan protein assay. Apoptosis 18, 452–466 (2013). https://doi.org/10.1007/s10495-012-0796-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-012-0796-0

Keywords

Navigation