Skip to main content
Log in

Neuroprotective effects of human mesenchymal stem cells on neural cultures exposed to 6-hydroxydopamine: implications for reparative therapy in Parkinson’s disease

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Stem cell (SC) transplantation represents a promising tool to treat neurodegenerative disorders, such as Parkinson’s disease (PD), but positive therapeutic outcomes require elucidation of the biological mechanisms involved. Therefore, we investigated human Mesenchymal SCs (hMSCs) ability to protect murine differentiated Neural SCs (mdNSCs) against the cytotoxic effects of 6-hydroxydopamine (6-OHDA) in a co-culture model mimicking the in vivo neurovascular niche. The internalization of 6-OHDA mainly relies on its uptake by the dopamine active transporter (DAT), but its toxicity could also involve other pathways. We demonstrated that mdNSCs consistently expressed DAT along the differentiative process. Exposure to 6-OHDA did not affect hMSCs, but induced DAT-independent apoptosis in mdNSCs with generation of reactive oxygen species and caspases 3/7 activation. The potential neuroprotective action of hMSCs on mdNSCs exposed to 6-OHDA was tested in different co-culture conditions, in which hMSCs were added to mdNSCs prior to, simultaneously, or after 6-OHDA treatment. In the presence of the neurotoxin, the majority of mdNSCs acquired an apoptotic phenotype, while co-cultures with hMSCs significantly increased their survival (up to 70%) in all conditions. Multiplex human angiogenic array analysis on the conditioned media demonstrated that cytokine release by hMSCs was finely modulated. Moreover, sole growth factor addition yielded a similar neuroprotective effect on mdNSCs. In conclusion, our findings demonstrate that hMSCs protect mdNSCs against 6-OHDA neurotoxicity, and rescue cells from ongoing neurodegeneration likely through the release of multiple cytokines. Our findings provide novel insights for the development of therapeutic strategies designed to counteract the neurodegenerative processes of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

hMSCs:

Human mesenchymal stem cells

mdNSCs:

Murine differentiated neural stem cells

mNSCs:

Murine neural stem cells

6-OHDA:

6-hydroxydopamine

DAT:

Dopamine active transporter

ROS:

Reactive oxygen species

CM:

Commercial medium

DM:

Differentiative medium

GBR-12909:

1-[2-[Bis(4-fluorophenyl) methoxy]ethyl]-4-(3-phenylpropyl) piperazine

GF:

Growth factors

References

  1. Shulman JM, De Jager PL, Feany MB (2011) Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol 6:193–222

    Article  PubMed  CAS  Google Scholar 

  2. Venda LL, Cragg SJ, Buchman VL, Wade-Martins R (2010) alpha-Synuclein and dopamine at the crossroads of Parkinson’s disease. Trends Neurosci 33:559–568

    Article  PubMed  CAS  Google Scholar 

  3. Allan LE, Petit GH, Brundin P (2010) Cell transplantation in Parkinson’s disease: problems and perspectives. Curr Opin Neurol 23:426–432

    PubMed  Google Scholar 

  4. Arenas E (2010) Towards stem cell replacement therapies for Parkinson’s disease. Biochem Biophys Res Commun 396:152–156

    Article  PubMed  CAS  Google Scholar 

  5. Kim HJ (2011) Stem cell potential in Parkinson’s disease and molecular factors for the generation of dopamine neurons. Biochim Biophys Acta 1812:1–11

    PubMed  CAS  Google Scholar 

  6. Cova L, Armentero MT, Zennaro E, Calzarossa C, Bossolasco P et al (2010) Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson’s disease. Brain Res 1311:12–27

    Article  PubMed  CAS  Google Scholar 

  7. Zou Z, Zhang Y, Hao L, Wang F, Liu D et al (2010) More insight into mesenchymal stem cells and their effects inside the body. Expert Opin Biol Ther 10(2):215–230

    Article  PubMed  CAS  Google Scholar 

  8. Garcia-Gomez I, Elvira G, Zapata AG, Lamana ML, Ramirez M et al (2010) Mesenchymal stem cells: biological properties and clinical applications. Expert Opin Biol Ther 10:1453–1468

    Article  PubMed  Google Scholar 

  9. Myers TJ, Granero-Molto F, Longobardi L, Li T, Yan Y et al (2010) Mesenchymal stem cells at the intersection of cell and gene therapy. Expert Opin Biol Ther 10:1663–1679

    Article  PubMed  CAS  Google Scholar 

  10. Dezawa M (2008) Systematic neuronal and muscle induction systems in bone marrow stromal cells: the potential for tissue reconstruction in neurodegenerative and muscle degenerative diseases. Med Mol Morphol 41:14–19

    Article  PubMed  CAS  Google Scholar 

  11. Moloney TC, Rooney GE, Barry FP, Howard L, Dowd E (2010) Potential of rat bone marrow-derived mesenchymal stem cells as vehicles for delivery of neurotrophins to the Parkinsonian rat brain. Brain Res 1359:33–43

    Article  PubMed  CAS  Google Scholar 

  12. Blandini F, Cova L, Armentero MT, Zennaro E, Levandis G et al (2010) Transplantation of undifferentiated human mesenchymal stem cells protects against 6-hydroxydopamine neurotoxicity in the rat. Cell Transplant 19:203–217

    Article  PubMed  Google Scholar 

  13. Bouchez G, Sensebe L, Vourc’h P, Garreau L, Bodard S et al (2008) Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson’s disease. Neurochem Int 52:1332–1342

    Article  PubMed  CAS  Google Scholar 

  14. Danielyan L, Schafer R, von Ameln-Mayerhofer A, Bernhard F, Verleysdonk S et al (2011) Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res 14:3–16

    Article  PubMed  CAS  Google Scholar 

  15. Delcroix GJ, Garbayo E, Sindji L, Thomas O, Vanpouille-Box C et al (2011) The therapeutic potential of human multipotent mesenchymal stromal cells combined with pharmacologically active microcarriers transplanted in hemi-parkinsonian rats. Biomaterials 32:1560–1573

    Article  PubMed  CAS  Google Scholar 

  16. Shetty P, Ravindran G, Sarang S, Thakur AM, Rao HS et al (2009) Clinical grade mesenchymal stem cells transdifferentiated under xenofree conditions alleviates motor deficiencies in a rat model of Parkinson’s disease. Cell Biol Int 33:830–838

    Article  PubMed  CAS  Google Scholar 

  17. Somoza R, Juri C, Baes M, Wyneken U, Rubio FJ (2010) Intranigral transplantation of epigenetically induced BDNF-secreting human mesenchymal stem cells: implications for cell-based therapies in Parkinson’s disease. Biol Blood Marrow Transplant 16:1530–1540

    Article  PubMed  CAS  Google Scholar 

  18. Thomas MG, Stone L, Evill L, Ong S, Ziman M et al (2011) Bone marrow stromal cells as replacement cells for Parkinson’s disease: generation of an anatomical but not functional neuronal phenotype. Transl Res 157:56–63

    Article  PubMed  CAS  Google Scholar 

  19. Wang F, Yasuhara T, Shingo T, Kameda M, Tajiri N et al (2010) Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: focusing on neuroprotective effects of stromal cell-derived factor-1alpha. BMC Neurosci 11:52

    Article  PubMed  CAS  Google Scholar 

  20. Ljungdahl A, Hokfelt T, Jonsson G, Sachs C (1971) Autoradiographic demonstration of uptake and accumulation of 3H-6-hydroxydopamine in adrenergic nerves. Experientia 27:297–299

    Article  PubMed  CAS  Google Scholar 

  21. Blum D, Torch S, Nissou MF, Benabid AL, Verna JM (2000) Extracellular toxicity of 6-hydroxydopamine on PC12 cells. Neurosci Lett 283:193–196

    Article  PubMed  CAS  Google Scholar 

  22. Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A, Munoz-Patino AM, Labandeira-Garcia JL (2000) Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson’s disease. J Neurochem 74:1605–1612

    Article  PubMed  CAS  Google Scholar 

  23. Blum D, Torch S, Lambeng N, Nissou M, Benabid AL et al (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65:135–172

    Article  PubMed  CAS  Google Scholar 

  24. Hanrott K, Gudmunsen L, O’Neill MJ, Wonnacott S (2006) 6-Hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase Cdelta. J Biol Chem 281:5373–5382

    Article  PubMed  CAS  Google Scholar 

  25. Gritti A, Frolichsthal-Schoeller P, Galli R, Parati EA, Cova L et al (1999) Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J Neurosci 19:3287–3297

    PubMed  CAS  Google Scholar 

  26. Redman PT, Jefferson BS, Ziegler CB, Mortensen OV, Torres GE et al (2006) A vital role for voltage-dependent potassium channels in dopamine transporter-mediated 6-hydroxydopamine neurotoxicity. Neuroscience 143:1–6

    Article  PubMed  CAS  Google Scholar 

  27. Storch A, Ludolph AC, Schwarz J (2004) Dopamine transporter: involvement in selective dopaminergic neurotoxicity and degeneration. J Neural Transm 111:1267–1286

    Article  PubMed  CAS  Google Scholar 

  28. Bossolasco P, Cova L, Calzarossa C, Servida F, Mencacci NE et al (2010) Metalloproteinase alterations in the bone marrow of ALS patients. J Mol Med 88:553–564

    Article  PubMed  CAS  Google Scholar 

  29. Kelly TK, Karsten SL, Geschwind DH, Kornblum HI (2009) Cell lineage and regional identity of cultured spinal cord neural stem cells and comparison to brain-derived neural stem cells. PLoS One 4:e4213

    Article  PubMed  Google Scholar 

  30. Manakova S, Puttonen KA, Raasmaja A, Mannisto PT (2004) The roles of dopamine transporter and Bcl-2 protein in the protection of CV1-P cells from 6-OHDA-induced toxicity. Toxicol Lett 154:117–123

    Article  PubMed  CAS  Google Scholar 

  31. Lan F, Xu J, Zhang X, Wong VW, Li X et al (2008) Hepatocyte growth factor promotes proliferation and migration in immortalized progenitor cells. Neuroreport 19:765–769

    Article  PubMed  CAS  Google Scholar 

  32. Yasuhara T, Shingo T, Muraoka K, Kameda M, Agari T et al (2005) Neurorescue effects of VEGF on a rat model of Parkinson’s disease. Brain Res 1053:10–18

    Article  PubMed  CAS  Google Scholar 

  33. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  34. Al-Jarrah M, Jamous M, Al Zailaey K, Bweir SO (2010) Endurance exercise training promotes angiogenesis in the brain of chronic/progressive mouse model of Parkinson’s Disease. NeuroRehabilitation 26:369–373

    PubMed  Google Scholar 

  35. Tian YY, Tang CJ, Wang JN, Feng Y, Chen XW et al (2007) Favorable effects of VEGF gene transfer on a rat model of Parkinson disease using adeno-associated viral vectors. Neurosci Lett 421:239–244

    Article  PubMed  CAS  Google Scholar 

  36. Blandini F, Levandis G, Bazzini E, Nappi G, Armentero MT (2007) Time-course of nigrostriatal damage, basal ganglia metabolic changes and behavioural alterations following intrastriatal injection of 6-hydroxydopamine in the rat: new clues from an old model. Eur J Neurosci 25:397–405

    Article  PubMed  Google Scholar 

  37. Mignini F, Traini E, Tomassoni D, Amenta F (2006) Dopamine plasma membrane transporter (DAT) in rat thymus and spleen: an immunochemical and immunohistochemical study. Auton Autacoid Pharmacol 26:183–189

    Article  PubMed  CAS  Google Scholar 

  38. Moe MC, Westerlund U, Varghese M, Berg-Johnsen J, Svensson M et al (2005) Development of neuronal networks from single stem cells harvested from the adult human brain. Neurosurgery 56:1182–1188 discussion 1188–1190

    Article  PubMed  Google Scholar 

  39. Salim K, Guest PC, Skynner HA, Bilsland JG, Bonnert TP et al (2007) Identification of proteomic changes during differentiation of adult mouse subventricular zone progenitor cells. Stem Cells Dev 16:143–165

    Article  PubMed  CAS  Google Scholar 

  40. Hoglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH et al (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7:726–735

    Article  PubMed  Google Scholar 

  41. Saito Y, Nishio K, Ogawa Y, Kinumi T, Yoshida Y et al (2007) Molecular mechanisms of 6-hydroxydopamine-induced cytotoxicity in PC12 cells: involvement of hydrogen peroxide-dependent and -independent action. Free Radic Biol Med 42:675–685

    Article  PubMed  CAS  Google Scholar 

  42. Jiang Y, Pei L, Li S, Wang M, Liu F (2008) Extracellular dopamine induces the oxidative toxicity of SH-SY5Y cells. Synapse 62:797–803

    Article  PubMed  CAS  Google Scholar 

  43. Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J et al (2011) Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8:59–71

    Article  PubMed  CAS  Google Scholar 

  44. Hardy SA, Maltman DJ, Przyborski SA (2008) Mesenchymal stem cells as mediators of neural differentiation. Curr Stem Cell Res Ther 3:43–52

    Article  PubMed  CAS  Google Scholar 

  45. Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm Suppl 277–290

  46. Nagatsu T, Sawada M (2007) Biochemistry of postmortem brains in Parkinson’s disease: historical overview and future prospects. J Neural Transm Suppl 113–120

  47. Chalovich EM, Zhu JH, Caltagarone J, Bowser R, Chu CT (2006) Functional repression of cAMP response element in 6-hydroxydopamine-treated neuronal cells. J Biol Chem 281:17870–17881

    Article  PubMed  CAS  Google Scholar 

  48. Nandhu MS, Paul J, Kuruvilla KP, Malat A, Romeo C et al (2011) Enhanced glutamate, IP3 and cAMP activity in the cerebral cortex of unilateral 6-hydroxydopamine induced Parkinson’s rats: effect of 5-HT, GABA and bone marrow cell supplementation. J Biomed Sci 18:5

    Article  PubMed  CAS  Google Scholar 

  49. Takeuchi H, Natsume A, Wakabayashi T, Aoshima C, Shimato S et al (2007) Intravenously transplanted human neural stem cells migrate to the injured spinal cord in adult mice in an SDF-1- and HGF-dependent manner. Neurosci Lett 426:69–74

    Article  PubMed  CAS  Google Scholar 

  50. Koike H, Ishida A, Shimamura M, Mizuno S, Nakamura T et al (2006) Prevention of onset of Parkinson’s disease by in vivo gene transfer of human hepatocyte growth factor in rodent model: a model of gene therapy for Parkinson’s disease. Gene Ther 13:1639–1644

    Article  PubMed  CAS  Google Scholar 

  51. Hu ZX, Geng JM, Liang DM, Luo M, Li ML (2010) Hepatocyte growth factor protects human embryonic stem cell derived-neural progenitors from hydrogen peroxide-induced apoptosis. Eur J Pharmacol 645:23–31

    Article  PubMed  CAS  Google Scholar 

  52. Yasuhara T, Shingo T, Muraoka K, wen Ji Y, Kameda M et al (2005) The differences between high and low-dose administration of VEGF to dopaminergic neurons of in vitro and in vivo Parkinson’s disease model. Brain Res 1038:1–10

    Article  PubMed  CAS  Google Scholar 

  53. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  PubMed  CAS  Google Scholar 

  54. Bai L, Caplan A, Lennon D, Miller RH (2007) Human mesenchymal stem cells signals regulate neural stem cell fate. Neurochem Res 32:353–362

    Article  PubMed  CAS  Google Scholar 

  55. Rodriguez-Pallares J, Parga JA, Munoz A, Rey P, Guerra MJ et al (2007) Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. J Neurochem 103:145–156

    PubMed  CAS  Google Scholar 

  56. Isele NB, Lee HS, Landshamer S, Straube A, Padovan CS et al (2006) Bone marrow stromal cells mediate protection through stimulation of PI3-K/Akt and MAPK signaling in neurons. Neurochem Int 50:243–250

    Article  PubMed  Google Scholar 

  57. Habisch HJ, Liebau S, Lenk T, Ludolph AC, Brenner R et al (2010) Neuroectodermally converted human mesenchymal stromal cells provide cytoprotective effects on neural stem cells and inhibit their glial differentiation. Cytotherapy 12:491–504

    Article  PubMed  CAS  Google Scholar 

  58. Adler MW, Geller EB, Chen X, Rogers TJ (2005) Viewing chemokines as a third major system of communication in the brain. Aaps J 7:E865–E870

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We dedicate this work to the loving memory of Professor Davide Soligo.

Disclosure

The authors indicate no potential conflicts of interest and that no competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Cova.

Additional information

Lidia Cova, Patrizia Bossolasco, and Marie-Therese Armentero contributed equally to this work.

Fabio Blandini and Vincenzo Silani—Joint senior authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cova, L., Bossolasco, P., Armentero, MT. et al. Neuroprotective effects of human mesenchymal stem cells on neural cultures exposed to 6-hydroxydopamine: implications for reparative therapy in Parkinson’s disease. Apoptosis 17, 289–304 (2012). https://doi.org/10.1007/s10495-011-0679-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0679-9

Keywords

Navigation