Skip to main content
Log in

Identification of DELE, a novel DAP3-binding protein which is crucial for death receptor-mediated apoptosis induction

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Death associated protein 3 (DAP3) is known to be a highly conserved protein, and is responsible for regulating apoptosis induced by various stimuli. To understand the molecular mechanism of how DAP3 induces apoptosis, we performed yeast two-hybrid screening, and identified a novel DAP3-binding protein termed death ligand signal enhancer (DELE). In this report, we show that DELE actually binds to DAP3 in mammalian cells. We found that the cells stably expressing DELE are susceptible to apoptosis induction by the stimulation of TNF-α and TRAIL. In addition, knockdown of DELE expression rescued the HeLa cells from apoptosis induction by these stimuli. Moreover, activation of caspase-3, caspase-8 and caspase-9 induced by stimulation of TNF-α, anti-Fas or TRAIL was significantly inhibited by the knockdown of DELE expression. These results demonstrated the biological significance of DELE for apoptosis signal mediated by death receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DAP3:

Death associated protein 3

DELE:

Death ligand signal enhancer

DR:

Death receptor

TNF:

Tumor necrosis factor

TRAIL:

TNF-related apoptosis inducing ligand

DD:

Death domain

DED:

Death effector domain

FADD:

Fas-associated death domain protein

CARD:

Caspase-recruitment domain

EGFP:

Enhanced green fluorescent protein

References

  1. Hajra KM, Liu JR (2004) Apoptosome dysfunction in human cancer. Apoptosis 9:691–704

    Article  CAS  PubMed  Google Scholar 

  2. Vermeulen K, Van Bockstaele DR, Berneman ZN (2004) Apoptosis: mechanisms and relevance in cancer. Ann Hematol 84:627–639

    Article  Google Scholar 

  3. Tanaka M, Miyake Y (2007) Apoptotic cell clearance and autoimmune disorder. Curr Med Chem 14:2892–2897

    Article  CAS  PubMed  Google Scholar 

  4. Krammer PH, Arnold R, Lavrik IN (2007) Life and death in peripheral T cells. Nat Rev Immunol 7:532–542

    Article  CAS  PubMed  Google Scholar 

  5. Opferman JT (2008) Apoptosis in the development of the immune system. Cell Death Differ 15:234–242

    Article  CAS  PubMed  Google Scholar 

  6. Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219

    Article  CAS  PubMed  Google Scholar 

  7. Nakamura T, Lipton SA (2009) Cell death: protein misfolding and neurodegenerative diseases. Apoptosis 14:455–468

    Article  CAS  PubMed  Google Scholar 

  8. Lorz C, Mehmet H (2009) The role of death receptors in neural injury. Front Biosci 14:583–595

    Article  CAS  PubMed  Google Scholar 

  9. Ashkenazi A, Herbst RS (2008) To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Invest 118:1979–1990

    Article  CAS  PubMed  Google Scholar 

  10. Croft M (2009) The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol 9:271–285

    Article  CAS  PubMed  Google Scholar 

  11. Karin M, Gallagher E (2009) TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol Rev 228:225–240

    Article  CAS  PubMed  Google Scholar 

  12. Strasser A, Jost PJ, Nagata S (2009) The many roles of FAS receptor signaling in the immune system. Immunity 30:180–192

    Article  CAS  PubMed  Google Scholar 

  13. Wilson TR, Johnston PG, Longley DB (2009) Anti-apoptotic mechanisms of drug resistance in cancer. Curr Cancer Drug Targets 9:307–319

    Article  CAS  PubMed  Google Scholar 

  14. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  CAS  PubMed  Google Scholar 

  15. Kissil JL, Deiss LP, Bayewitch M, Raveh T, Khaspekov G, Kimchi A (1995) Isolation of DAP3, a novel mediator of interferon-gamma-induced cell death. J Biol Chem 270:27932–27936

    Article  CAS  PubMed  Google Scholar 

  16. Miyazaki T, Reed JC (2001) A GTP-binding adapter protein couples TRAIL receptors to apoptosis-inducing proteins. Nat Immunol 2:493–500

    Article  CAS  PubMed  Google Scholar 

  17. Miyazaki T, Shen M, Fujikura D, Tosa N, Kim HR, Kon S, Uede T, Reed JC (2004) Functional role of death-associated protein 3 (DAP3) in anoikis. J Biol Chem 279:44667–44672

    Article  CAS  PubMed  Google Scholar 

  18. Li HM, Fujikura D, Harada T, Uehara J, Kawai T, Akira S, Reed JC, Iwai A, Miyazaki T (2009) IPS-1 is crucial for DAP3-mediated anoikis induction by caspase-8 activation. Cell Death Differ 16:1615–1621

    Article  CAS  PubMed  Google Scholar 

  19. Kim HR, Chae HJ, Thomas M, Miyazaki T, Monosov A, Monosov E, Krajewska M, Krajewski S, Reed JC (2007) Mammalian dap3 is an essential gene required for mitochondrial homeostasis in vivo and contributing to the extrinsic pathway for apoptosis. FASEB J 21:188–196

    Article  CAS  PubMed  Google Scholar 

  20. Kissil JL, Cohen O, Raveh T, Kimchi A (1999) Structure-function analysis of an evolutionary conserved protein, DAP3, which mediates TNF-alpha- and Fas-induced cell death. EMBO J 18:353–362

    Article  CAS  PubMed  Google Scholar 

  21. Berger T, Brigl M, Herrmann JM, Vielhauer V, Luckow B, Schlondorff D, Kretzler M (2000) The apoptosis mediator mDAP-3 is a novel member of a conserved family of mitochondrial proteins. J Cell Sci 113:3603–3612

    CAS  PubMed  Google Scholar 

  22. Saveanu C, Fromont-Racine M, Harington A, Ricard F, Namane A, Jacquier A (2001) Identification of 12 new yeast mitochondrial ribosomal proteins including 6 that have no prokaryotic homologues. J Biol Chem 276:15861–15867

    Article  CAS  PubMed  Google Scholar 

  23. Madeo F, Herker E, Maldener C, Wissing S, Lächelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Fröhlich KU (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917

    Article  CAS  PubMed  Google Scholar 

  24. Takeda S, Iwai A, Nakashima M, Fujikura D, Chiba S, Li HM, Uehara J, Kawaguchi S, Kaya M, Nagoya S, Wada T, Yuan J, Rayter S, Ashworth A, Reed JC, Yamashita T, Uede T, Miyazaki T (2007) LKB1 is crucial for TRAIL-mediated apoptosis induction in osteosarcoma. Anticancer Res 27:761–768

    CAS  PubMed  Google Scholar 

  25. Lamb JR, Tugendreich S, Hieter P (1995) Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem Sci 20:257–259

    Article  CAS  PubMed  Google Scholar 

  26. Das AK, Cohen PW, Barford D (1998) The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J 17:1192–1199

    Article  CAS  PubMed  Google Scholar 

  27. D’Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28:655–662

    Article  PubMed  Google Scholar 

  28. Murata Y, Wakoh T, Uekawa N, Sugimoto M, Asai A, Miyazaki T, Maruyama M (2006) Death-associated protein 3 regulates cellular senescence through oxidative stress response. FEBS Lett 580:6093–6099

    Article  CAS  PubMed  Google Scholar 

  29. Ashkenazi A, Dixit VM (1999) Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11:255–260

    Article  CAS  PubMed  Google Scholar 

  30. Guicciardi ME, Gores GJ (2009) Life and death by death receptors. FASEB J 23:1625–1637

    Article  CAS  PubMed  Google Scholar 

  31. Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11:725–730

    Article  PubMed  Google Scholar 

  32. Thorburn A (2004) Death receptor-induced cell killing. Cell Signal 16:139–144

    Article  CAS  PubMed  Google Scholar 

  33. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81:505–512

    Article  CAS  PubMed  Google Scholar 

  34. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13:1423–1433

    Article  CAS  PubMed  Google Scholar 

  35. Hofmann K, Bucher P, Tschopp J (1997) The CARD domain: a new apoptotic signalling motif. Trends Biochem Sci 22:155–156

    Article  CAS  PubMed  Google Scholar 

  36. Weber CH, Vincenz C (2001) The death domain superfamily: a tale of two interfaces? Trends Biochem Sci 26:475–481

    Article  CAS  PubMed  Google Scholar 

  37. Reed JC, Doctor KS, Godzik A (2004) The domains of apoptosis: a genomics perspective. Sci STKE 239:re9

    Google Scholar 

  38. Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21:267–271

    CAS  PubMed  Google Scholar 

  39. Nagase T, Seki N, Ishikawa K, Tanaka A, Nomura N (1996) Prediction of the coding sequences of unidentified human genes. V. The coding sequences of 40 new genes (KIAA0161-KIAA0200) deduced by analysis of cDNA clones from human cell line KG-1 (supplement). DNA Res 3:43–53

    Article  CAS  PubMed  Google Scholar 

  40. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, RESEARCH0034.1-0034.11

Download references

Acknowledgment

We would like to thank Prof. Toshimitsu Uede (Department of Molecular Immunology, Institute for Genetic Medicine, Hokkaido University) whose consultations helped us in our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadaaki Miyazaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2010_519_MOESM1_ESM.tif

Supplemental Fig. 1. Induction of apoptosis to the HeLa cells by transiently overexpressing DELE. HeLa cells were seeded onto 6-well plate, and subsequently the cells were transfected with 4 μg of control vector or expression vector of DELE after 48 h, the cells were observed using phase-contrast microscope (Eclipse TE200-U; Nikon, Tokyo, Japan). (TIFF 14937 kb)

10495_2010_519_MOESM2_ESM.tif

Supplemental Fig. 2. Rescue of the HeLa cells from the TRAIL induced apoptosis by knockdown of DELE. The HeLa cells were transfected with DELE specific siRNA or control siRNA. After 48 h, cells were stimulated with TRAIL at the series of concentrations indicated in the figure. After a 24 h post-stimulation incubation period, the cells were observed using phase-contrast microscope (Eclipse TE200-U; Nikon). (TIFF 29674 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, T., Iwai, A. & Miyazaki, T. Identification of DELE, a novel DAP3-binding protein which is crucial for death receptor-mediated apoptosis induction. Apoptosis 15, 1247–1255 (2010). https://doi.org/10.1007/s10495-010-0519-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0519-3

Keywords

Navigation