Skip to main content
Log in

Analysis of different cell death processes of prepubertal rat oocytes in vitro

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The processes of cell death were studied in vitro in populations of oocytes isolated from prepubertal rats. In order to identify apoptosis, the externalized phosphatidylserine was recognized with Annexin-V coupled to FITC and the fragmentation of DNA was demonstrated by means of electrophoresis. Oocytes were tested for autophagy by means of the incorporation of monodansylcadaverine and monitoring Lc3-I/Lc3-II by western blot. The expression of mRNA marker genes of autophagy and of apoptosis was studied by means of RT–PCR in pure populations of oocytes. Some oocytes expressed at least one of the following markers: caspase-3, lamp1 and Lc3. Some oocytes were positive to Annexin-V or to monodansylcadaverine. However, most of them were simultaneously positive to both markers. The relative frequency of oocytes simultaneously positive to markers of apoptosis and autophagy did not change in the different ages studied. The transformation of Lc3-I in Lc3-II was present in all populations of oocytes studied. The mRNAs for caspase-3, lamp1 and Lc3 were present in all populations of oocytes analyzed. Our results demonstrate that oocytes of rats from new born to prepubertal age are eliminated by means of three different cell death processes: apoptosis, autophagy and a mixed event in which both routes to cell death participate in the same cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Graph 1

Similar content being viewed by others

References

  1. Kezele P, Nilsson E, Skinner MK (2002) Cell-cell interactions in primordial follicle assembly and development. Front Biosci 7:1990–1996

    Article  Google Scholar 

  2. Quirk SM, Cowan RG, Harman RM (2004) Progesterone receptor and the cell cycle modulate apoptosis in granulosa cells. Endocrinology 145:5033–5043

    Article  CAS  PubMed  Google Scholar 

  3. Kovacs J, Forgo V, Peczely P (1992) The fine structure of the follicular cell in growing and atretic ovarian follicles of the domestic goose. Cell Tissue Res 267:561–569

    Article  CAS  PubMed  Google Scholar 

  4. D’Herde K, De Prest B, Roels F (1996) Subtypes of active cell death in the granulosa of ovarian atretic follicles in the quail (coturnix coturnix japónica). Reprod Nutr Dev 36:175–189

    Article  PubMed  Google Scholar 

  5. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  CAS  PubMed  Google Scholar 

  6. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  CAS  PubMed  Google Scholar 

  7. Bursch W (2001) The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 8:569–581

    Article  CAS  PubMed  Google Scholar 

  8. Chang MHY, Karageorgos LE, Meikle PJ (2002) CD107a-(Lamp-1) and CD107b-(Lamp-2). J Biol Regul Homeost Agents 16:147–151

    CAS  PubMed  Google Scholar 

  9. Al-Awqati Q (1986) Proton-translocating ATPases. Annu Rev Cell Biol 2:179–199

    Article  CAS  PubMed  Google Scholar 

  10. DeDuve C, DeBarsy T, Poole B, Trouet A, Tulkens P, van Hoof F (1974) Commentary: lysosomotropic agents. Biochem Pharmacol 23:2495–2531

    Article  CAS  Google Scholar 

  11. Biederbick A, Kern HF, Elsässer HP (1995) Monodansilcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol 66:3–14

    CAS  PubMed  Google Scholar 

  12. Lorand LG, Siefring GE Jr, Tong YS, Bruner-Loran J, Gray AJ Jr (1979) Dansylcadaverine specific staining for transamidating enzymes. Anal Biochem 93:453–458

    Article  CAS  PubMed  Google Scholar 

  13. Davies PJA, Cornwell MM, Johnson JD, Reggiani A, Myers M, Murtaugh MP (1984) Studies on the effects of dansylcadaverine and related compounds on receptor-mediated endocytosis in cultured cells. Diabetes Care 7:35–41

    CAS  PubMed  Google Scholar 

  14. Garcia GM, van Lookeren CM, Esbrit P, Navarro F, Mato JM (1984) Effect of monodansylcadaverine on the syntesis of phosphatidylinositol by rabbit neutrophils. Biochim Biophys Acta 794:234–239

    Google Scholar 

  15. Munafo DB, Colombo MI (2001) A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 114:3619–3629

    CAS  PubMed  Google Scholar 

  16. Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107–1117

    Article  CAS  PubMed  Google Scholar 

  17. Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118:7–18

    Article  CAS  PubMed  Google Scholar 

  18. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657–668

    Article  CAS  PubMed  Google Scholar 

  19. Rajawat Y, Bossis I (2008) Autophagy in aging an in neurodegenerative disorders. Hormones 7(1):46–61

    PubMed  Google Scholar 

  20. Fader CM, Sánchez D, Furlán M, Colombo M (2008) Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in K562 cells. Traffic 9:230–250

    CAS  PubMed  Google Scholar 

  21. Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2:211–216

    Article  CAS  PubMed  Google Scholar 

  22. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) Lc3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed  Google Scholar 

  23. Tanida I, Ueno T, Kominami E (2004) Lc3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36:2503–2525

    Article  CAS  PubMed  Google Scholar 

  24. Billig H, Furuta I, Hsueh AJ (1993) Estrogens inhibit and androgens enhance ovarian granulosa cell apoptosis. Endocrinology 133:2204–2212

    Article  CAS  PubMed  Google Scholar 

  25. Chun SY, Eisenhauer KM, Minami S, Billig H, Perlas E, Hsueh AJ (1996) Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor. Endocrinology 137:1447–1456

    Article  CAS  PubMed  Google Scholar 

  26. Tilly JL, Kowalski KI, Schomberg DW, Hsueh AJ (1992) Apoptosis in atretic ovarian follicles is associated with selective decreases in messenger ribonucleic acid transcripts for gonadotropin receptors and cytochrome P450 aromatase. Endocrinology 131:1670–1676

    Article  CAS  PubMed  Google Scholar 

  27. Bair CH, Chung CS, Vasilevskaya IA, Chang W (1996) Isolation and characterization of a Chinese hamster ovary mutant cell line with altered sensitivity to vaccinia virus killing. J Virol 70:4655–4666

    CAS  PubMed  Google Scholar 

  28. Tilly JL, Kowalski KI, Johnson AL, Hsueh AJW (1991) Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology 129:2799–2801

    Article  CAS  PubMed  Google Scholar 

  29. Kasuya K (1995) The process of apoptosis during the follicular epithelial cells in the rabbit ovary with special reference to involvement by macrophages. Arch Histol Cytol 58:257–264

    Article  CAS  PubMed  Google Scholar 

  30. Jolly PD, Tisdall TJ, Heath DA, Kun S, McNatty KP (1994) Apoptosis in bovine granulosa cells in relation to steroid synthesis, cyclic adenosine 39, 59-monophosphate response to follicle-stimulating hormone and luteinizing hormone, and follicular atresia. Biol Reprod 51:934–944

    Article  CAS  PubMed  Google Scholar 

  31. Hsuch AJW, Eisenhauer K, Chun SY, Hsu SY, Bilig H (1996) Gonadal cell apoptosis. Recent Prog Horm Res 51:433–455

    Google Scholar 

  32. Tilly JL (1998) Molecular and genetic basis of normal and toxicant-induced apoptosis in female germ cells. Toxicol Lett 102(3):497–501

    Article  PubMed  Google Scholar 

  33. Soto P, Smith LC (2009) BH4 peptide derived from Bcl-xL and Bax-inhibitor peptide suppresses apoptotic mitochondrial changes in heat stressed bovine oocytes. Mol Reprod Dev 76:637–646

    Article  CAS  PubMed  Google Scholar 

  34. Arnault E, Tosca L, Courtot AM, Doussau M, Pesty A, Finaz C, Allemand I, Lefèvre B (2008) Caspase-2(L), caspase-9, and caspase-3 during in vitro maturation and fragmentation of the mouse oocyte. Dev Dyn 237(12):3892–3903

    Article  CAS  PubMed  Google Scholar 

  35. Petrová I, Sedmíková M, Petr J, Vodková Z, Pytloun P, Chmelíková E, Rehák D, Ctrnáctá A, Rajmon R, Jílek F (2009) The roles of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) in aged pig oocytes. J Reprod Dev 55(1):75–82

    Article  PubMed  Google Scholar 

  36. Hirao Y, Shimizu M, Iga K, Takenouchi N (2009) Growth of bovine oocyte-granulosa cell complexes cultured individually in microdrops of various sizes. J Reprod Dev 55(1):88–93

    Article  PubMed  Google Scholar 

  37. Takai Y, Matikainen T, Jurisicova A, Kim MR, Trbovich AM, Fujita E, Nakagawa T, Lemmers B, Flavell RA, Hakem R, Momoi T, Yuan J, Tilly JL, Perez GI (2007) Caspase-12 compensates for lack of caspase-2 and caspase-3 in female germ cells. Apoptosis 12(4):791–800

    Article  CAS  PubMed  Google Scholar 

  38. Perez GI, Acton BM, Jurisicova A, Perkins GA, White A, Brown J, Trbovich AM, Kim MR, Fissore R, Xu J, Ahmady A, D’Estaing SG, Li H, Kagawa W, Kurumizaka H, Yokoyama S, Okada H, Mak TW, Ellisman MH, Casper RF, Tilly JL (2007) Genetic variance modifies apoptosis susceptibility in mature oocytes via alterations in DNA repair capacity and mitochondrial ultrastructure. Cell Death Differ 14(3):524–533

    Article  CAS  PubMed  Google Scholar 

  39. Ortiz R, Echeverría OM, Salgado R, Escobar ML, Vázquez-Nin GH (2006) Fine structural and cytochemical analysis of the processes of cell death of oocytes in atretic follicles in new born and prepubertal rats. Apoptosis 11(1):25–37

    Article  CAS  PubMed  Google Scholar 

  40. Escobar ML, Echeverría OM, Ortiz R, Vázquez-Nin GH (2008) Culminated apoptosis and autophagy the process that eliminates the oocytes of atretic follicles in immature rats. Apoptosis 13:1253–1266

    Article  CAS  PubMed  Google Scholar 

  41. Reed JC (1999) Dysregulation of apoptosis in cancer. J Clin Oncol 17:2941–2953

    CAS  PubMed  Google Scholar 

  42. Letai AG (2008) Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer 8:121–132

    Article  CAS  PubMed  Google Scholar 

  43. Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13:994–1002

    Article  CAS  PubMed  Google Scholar 

  44. de Medina P, Payre B, Boubekeur N, Bertrand-Michel J, Terce F, Silvente-Poirot S, Poirot M (2009) Ligands of the antiestrogen-binding site induce active cell death and autophagy in human breast cancer cells through the modulation of cholesterol metabolism. Cell Death Differ 16:1372–1384

    Article  PubMed  Google Scholar 

  45. Guide for the care and use of laboratory animals. National Academics Press, Washingon DC, 1996, pp 1–140

  46. Toyooka Y, Tsunekawa N, Takahashi Y, Matsui Y, Satoh M, Noce T (2000) Expression and intracellular localization of mouse vasa-homologue protein during germ cell development. Mech Dev 93:139–149

    Article  CAS  PubMed  Google Scholar 

  47. Kerr J, Willie AH, Curie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239

    CAS  PubMed  Google Scholar 

  48. De Felici M, Klinger FG, Farini DD, Scaldaferri ML, Iona S, Lobascio M (2005) Establishment of oocyte population in the fetal ovary: primordial germ cell proliferation and oocyte programmed cell death. Reprod BioMed Online10:182–191. Online ISSN:1472-6491

    Google Scholar 

  49. Perez GI, Robles R, Knudson CM, Flaws JA, Korsmeyer SJ, Tilly JL (1999) Prolongation of ovarian lifespan into advanced chronological age by Bax-deficiency. Nat Genet 21:200–203

    Article  CAS  PubMed  Google Scholar 

  50. Perez GI, Trbovich AM, Gosden RG, Tilly JL (2000) Mitochondria and the death of oocytes. Nature 403:500–501

    Article  CAS  PubMed  Google Scholar 

  51. Tilly JL, Kowalski KI, Johnson AL, Hsueh AJ (1991) Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology 129(5):2799–2801

    Article  CAS  PubMed  Google Scholar 

  52. Orisaka M, Tajima K, Tsang BK, Kotsuji F (2009) Oocyte-granulosa-theca cell interactions during preantral follicular development. J Ovarian Res 2(1):9

    Article  PubMed  Google Scholar 

  53. Fadok VA, Laszlo DJ, Noble PW, Weinstein L, Riches DW, Henson PM (1993) Particle digestibility is required for induction of the phosphatidylserine recognition mechanism used by murine macrophages to phagocytose apoptotic cells. J Immunol 151:4274–4285

    CAS  PubMed  Google Scholar 

  54. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    CAS  PubMed  Google Scholar 

  55. O’Brien IEW, Reutelingsperger CPM, Holdaway KM (1997) The use of Annexin-V and TUNEL to monitor the progression of apoptosis in plants. Cytometry 29:28–33

    Article  PubMed  Google Scholar 

  56. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin-V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    CAS  PubMed  Google Scholar 

  57. Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, Green DR (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182:1545–1556

    Article  CAS  PubMed  Google Scholar 

  58. van Engeland M, Ramaekers FCS, Schutte B, Reutelingsperger CPM (1996) A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry 24:131–139

    Article  PubMed  Google Scholar 

  59. Vermes I, Haanen C, Steffens-Naaken H, Reutelingsperger CPM (1995) A novel assay for apoptosis-flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescin labelled Annexin-V. J Immunol Methods 184:39–51

    Article  CAS  PubMed  Google Scholar 

  60. Fenwick MA, Hurst PR (2002) Immunohistochemical localization of active caspase-3 in the Mouse ovary: growth and atresia of small follicles. Reproduction 124:659–665

    Article  CAS  PubMed  Google Scholar 

  61. Berardinelli P, Russo V, Martelli A, Nardinocchi D, Di Giacinto O, Barboni B, Mattioli M (2004) Colocalization of DNA fragmentation and caspase-3 activation during atresia in pig antral follicles. Anat Histol Embryol 33:23–27

    Article  CAS  PubMed  Google Scholar 

  62. Glamoclija V, Vilovic K, Saraga-Babic M, Baranovic A, Sapunar D (2005) Apoptosis and active casapase-3 expression in human granulosa cells. Fertil Steril 83:425–431

    Article  Google Scholar 

  63. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  PubMed  Google Scholar 

  64. Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7:767–777

    Article  CAS  PubMed  Google Scholar 

  65. Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T (2003) Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 116:1679–1688

    Article  CAS  PubMed  Google Scholar 

  66. Fujita N, Itoh T, Fukuda M, Noda T, Yoshimori T (2008) The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 19:2092–2100

    Article  CAS  PubMed  Google Scholar 

  67. Niemann A, Takatsuki A, Elsasser HP (2000) The lysosomotropic agent monodansylcadaverine also acts as a solvent polarity probe. J Histochem Cytochem 48:251–258

    CAS  PubMed  Google Scholar 

  68. McClellan KA, Gosden R, Taketo T (2003) Continuous loss of oocytes throughout meiotic prophase in the normal mouse ovary. Dev Biol 258(2):334–348

    Article  CAS  PubMed  Google Scholar 

  69. Ghafari F, Gutiérrez CG, Hartshorne GM (2007) Apoptosis in mouse fetal and neonatal oocytes during meiotic prophase one. BMC Dev Biol. doi:10.1186/1471-213X/7/87

  70. Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132

    Article  CAS  PubMed  Google Scholar 

  71. Eisenberg-Lerner A, Bialik S, Simon HU, Kimchi A (2009) Life and death Partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 16(7):966–975

    Article  CAS  PubMed  Google Scholar 

  72. Yee KS, Wilkinson S, James J, Ryan KM, Vousden KH (2009) PUMA- and Bax-induced autophagy contributes to apoptosis. Cell Death Differ 16(8):1135–1145

    Article  CAS  PubMed  Google Scholar 

  73. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    Article  CAS  PubMed  Google Scholar 

  74. Oberstein A, Jeffrey PD, Shi Y (2007) Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem 282(17):13123–13132

    Article  CAS  PubMed  Google Scholar 

  75. Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, Hickman JA, Geneste O, Kroemer G (2007) Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26(10):2527–2539

    Article  CAS  PubMed  Google Scholar 

  76. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283(16):10892–10903

    Article  CAS  PubMed  Google Scholar 

  77. Luo S, Rubinsztein DC (2007) Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death Differ 14:1247–1250

    Article  CAS  PubMed  Google Scholar 

  78. Acuña E, Fornes R, Fernandois D, Garrido MP, Greiner M, Lara HE, Paredes AH (2009) Increases in norepinephrine release and ovarian cyst formation during ageing in the rat. Reprod Biol Endocrinol 7:64

    Article  PubMed  Google Scholar 

  79. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6(12):1221–1228

    Article  CAS  PubMed  Google Scholar 

  80. Maycotte P, Guemez-Gamboa A, Moran J (2009) Apoptosis and autophagy in rat cerebellar granule neuron death: role of reactive oxygen species. J Neurosci Res. 10.1002/jnr.22168

Download references

Acknowledgments

We would like to thank Dr. Juan Manuel Hernández Castellanos (Departamento de Fisiología, Facultad de Medicina, UNAM) for glass micropipette manufacturing. We thank the technical assistance of Carmen Mondragón, Ma. José Gómora, and Silvia Reyes. This work was supported by PAPIIT-203308; CONACYT and PAPIME-PE204609.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Vázquez-Nin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escobar, M.L., Echeverría, O.M., Sánchez-Sánchez, L. et al. Analysis of different cell death processes of prepubertal rat oocytes in vitro. Apoptosis 15, 511–526 (2010). https://doi.org/10.1007/s10495-009-0448-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0448-1

Keywords

Navigation