Skip to main content
Log in

Apoptosis in mosquito midgut epithelia associated with West Nile virus infection

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The mosquito Culex pipiens pipiens is a documented vector of West Nile virus (WNV, Flaviviridae, Flavivirus). Our laboratory colony of C. p. pipiens, however, was repeatedly refractory to experimental transmission of WNV. Our goal was to identify if a cellular process was inhibiting virus infection of the midgut. We examined midguts of mosquitoes fed control and WNV-infected blood meals. Three days after feeding, epithelial cells from abdominal midguts of mosquitoes fed on WNV fluoresced under an FITC filter following Acridine Orange staining, indicating apoptosis in this region. Epithelial cells from experimental samples examined by TEM exhibited ultrastructural changes consistent with apoptosis, including shrinkage and detachment from neighbors, heterochromatin condensation, nuclear degranulation, and engulfment of apoptotic bodies by adjacent cells. Virions were present in cytoplasm and within cytoplasmic vacuoles of apoptotic cells. No apoptosis was detected by TEM in control samples. In parallel, we used Vero cell plaque assays to quantify infection after 7 and 10 day extrinsic incubation periods and found that none of the mosquitoes (0/55 and 0/10) which imbibed infective blood were infected. We propose that programmed cell death limits the number of WNV-infected epithelial cells and inhibits disseminated viral infections from the mosquito midgut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lanciotti RS, Roehrig JT, Deubel V et al (1999) Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286:2333–2337

    Article  PubMed  CAS  Google Scholar 

  2. http://www.cdc.gov/ncidod/dvbid/westnile/surv&controlCaseCount05_detailed.htm

  3. Anderson JF, Andreadis TG, Vossbrinck CR et al (1999) Isolation of West Nile virus from mosquitoes, crows, and a Cooper's hawk in Connecticut. Science 286:2331–2333

    Article  PubMed  CAS  Google Scholar 

  4. Goddard LB, Roth AE, Reisen WK, Scott TW (2002) Vector competence of California mosquitoes for West Nile virus. Emerg Infect Dis 8:1385–1391

    PubMed  Google Scholar 

  5. Sardelis MR, Turell MJ, Dohm DJ, O’Guinn ML (2001) Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus. Emerg Infect Dis 7:1018–1022

    Article  PubMed  CAS  Google Scholar 

  6. Turell MJ, O’Guinn ML, Dohm DJ, Jones JW (2001) Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol 38:130–134

    Article  PubMed  CAS  Google Scholar 

  7. Turell MJ, O’Guinn ML, Oliver J (2000) Potential for New York mosquitoes to transmit West Nile virus. Am J Trop Med Hyg 62:413–414

    PubMed  CAS  Google Scholar 

  8. Girard YA, Klingler KA, Higgs S (2004) West Nile virus dissemination and tissue tropisms in orally infected Culex pipiens quinquefasciatus. Vector-borne Zoonotic Dis 4:109–122

    Article  PubMed  Google Scholar 

  9. Hardy JL, Houk EJ, Kramer LD, Reeves WC (1983) Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol 28:229–262

    Article  PubMed  CAS  Google Scholar 

  10. Parquet MDC, Kumatori A, Hasebe F, Morita K, Igarashi A (2001) West Nile virus-induced bax-dependent apoptosis. FEBS Letters 500:17–24

    Article  PubMed  CAS  Google Scholar 

  11. Dhingra V, Li Q, Allison AB, Stallknecht DE, Fu ZF (2005) Proteomic profiling and neurodegeneration in West Nile virus-infected neurons. J Biomed Biotech 3:271–279

    Article  CAS  Google Scholar 

  12. Lawrie CH, Uzcátegui NY, Armesto M, Bell-Sakyi L, Gould EA (2004) Susceptibility of mosquito and tick cell lines to infection with various flaviviruses. Med Vet Entomol 18:268–274

    Article  PubMed  CAS  Google Scholar 

  13. Hunsperger E, Roehrig JT (2005) Characterization of West Nile viral replication and maturation in peripheral neurons in culture. J Neurovirol 11:11–22

    Article  PubMed  CAS  Google Scholar 

  14. Athawale SS, Sudeep AB, Barde PV, Jadi R, Pant U, Mishra AC, Mourya DT (2002) A new cell line from the embryonic tissues of Culex tritaeniorhynchus and its susceptibility to certain flaviviruses. Acta Virol 46:237–240

    PubMed  CAS  Google Scholar 

  15. Weissenböck H, Bakonyi T, Chvala S, Nowotny N (2004) Experimental Usutu virus infection of suckling mice causes neuronal and glial cell apoptosis and demyelination. Acta Neuropathol 108:453–460

    Article  PubMed  Google Scholar 

  16. Liao CL, Lin YL, Wang JJ et al (1997) Effect of enforced expression of human bcl-2 on Japanese encephalitis virus-induced apoptosis in cultured cells. J Virol 71:5963–5971

    PubMed  CAS  Google Scholar 

  17. Paterson A, Robinson E, Suchman E, Afanasiev B, Carlson J (2005) Mosquito densonucleosis viruses cause dramatically different infection phenotypes in the C6/36 Aedes albopictus cell line. Virol 337:253–261

    Article  CAS  Google Scholar 

  18. Bergmann A, Agapite J, Steller H (1998) Mechanisms and control of programmed cell death in invertebrates. Oncogene 17:3215–3223

    Article  PubMed  Google Scholar 

  19. Jacobson MD, Weil M, Raff MC (1998) Programmed cell death in animal development. Cell 88:347–354

    Article  Google Scholar 

  20. Fadok VA, Chimini G (2001) The phagocytosis of apoptotic cells. Sem Immunol 13:365–372

    Article  CAS  Google Scholar 

  21. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137A

    Google Scholar 

  22. McCall K, Peterson JS (2004) Detection of apoptosis in Drosophila. In: Brady HJM (ed) Apoptosis methods and protocols. Humana Press, Totowa, NJ, pp 191–206

    Chapter  Google Scholar 

  23. Okuda K, de Spiza Carpco A, Ribolla PEM, de Bianchi AG, Bijovsky AT (2002) Functional morphology of adult female Culex quinquefasciatus midgut during blood digestion. Tissue Cell 34:210–219

    Article  PubMed  CAS  Google Scholar 

  24. Hecker H, Brun R, Reinhardt C, Burri PH (1974) Morphometric analysis of the midgut of female Aedes aegypti (L.) (Insecta, Diptera) under various physiological conditions. Cell Tissue Res 152:31–49

    Article  PubMed  CAS  Google Scholar 

  25. Houk EJ (1977) Midgut ultrastructure of Culex tarsalis (Diptera: Culicidae) before and after a bloodmeal. Tissue Cell 9:103–118

    Article  PubMed  CAS  Google Scholar 

  26. Mosquera JA, Hernandez JP, Valero N, Espina LM, Añez GJ (2005) Ultrastructural studies on dengue virus type 2 infection of cultured human monocytes. Virol J 2:26–31

    Article  PubMed  CAS  Google Scholar 

  27. Girard YA, Popov V, Wen J, Han V, Higgs S (2005) Ultrastructural study of West Nile virus pathogenesis in Culex pipiens quinquefasciatus (Diptera: Culicidae). J Med Entomol 42:429–444

    PubMed  Google Scholar 

  28. Weaver SC, Lorenz LH, Scott TW (1992) Pathologic changes in the midgut of Culex tarsalis following infection with Western equine encephalomyelitis virus. Am J Trop Med Hyg 47:691–701

    PubMed  CAS  Google Scholar 

  29. Weaver SC, Scott TW, Lorenz LH, Lerdthusnee K, Romoser WS (1988) Togavirus-associated pathologic changes in the midgut of a natural mosquito vector. J Virol 62:2083–2090

    PubMed  CAS  Google Scholar 

  30. Weaver SC, Scott TW, Lorenz LH (1990) Patterns of eastern equine encephalomyelitis virus infection in Culiseta melanura (Diptera: Culicidae). J Med Entomol 27:878–891

    PubMed  CAS  Google Scholar 

  31. Blitvich BJ, Blair CD, Kempf BJ et al (2002) Developmental- and tissue-specific expression of an inhibitor of apoptosis protein 1 homologue from Aedes triseriatus mosquitoes. Insect Mol Biol 11:431–442

    Article  PubMed  CAS  Google Scholar 

  32. Zieler H, Dvorak JA (2000) Invasion in vitro of mosquito midgut cells by the malaria parasite proceeds by a conserved mechanism and results in death of the invaded midgut cells. Proc Nat Acad Sci 97:11516–11521

    Article  PubMed  CAS  Google Scholar 

  33. Vlachou D, Schlegelmilch T, Christophides GK, Kafatos FC (2005) Functional genomic analysis of midgut epithelial responses in Anopheles during Plasmodium invasion. Curr Biol 15:1185–1195

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Vaidyanathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaidyanathan, R., Scott, T.W. Apoptosis in mosquito midgut epithelia associated with West Nile virus infection. Apoptosis 11, 1643–1651 (2006). https://doi.org/10.1007/s10495-006-8783-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-8783-y

Keywords

Navigation