Skip to main content
Log in

Monitoring of tumor response to chemotherapy in vivo by a novel small-molecule detector of apoptosis

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Utilization of molecular imaging of apoptosis for clinical monitoring of tumor response to anti-cancer treatments in vivo is highly desirable. To address this need, we now present ML-9 (butyl-2-methyl-malonic acid; MW = 173), a rationally designed small-molecule detector of apoptosis, based on a novel alkyl-malonate motif. In proof-of-concept studies, induction of apoptosis in tumor cells by various triggers both in vitro and in vivo was associated with marked uptake of 3H-ML-9 administered in vivo, in correlation with the apoptotic hallmarks of DNA fragmentation, caspase-3 activation and membrane phospholipid scrambling, and with correlative tumor regression. ML-9 uptake following chemotherapy was tumor-specific, with rapid clearance of the tracer from the blood and other non-target organs. Excess of non-labeled “cold” compound competitively blocked ML-9 tumor uptake, thus demonstrating the specificity of ML-9 binding. ML-9 may therefore serve as a platform for a novel class of small-molecule imaging agents for apoptosis, useful for assessment of tumor responsiveness to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bock NA, Zadeh G, Davidson LM, Qian B, Sled JG, Guha A, Henkelman RM (2003) High-resolution longitudinal screening with magnetic resonance imaging in a murine brain cancer model. Neoplasia 5:546–554

    PubMed  Google Scholar 

  2. Fenton JJ, Weiss NS (2004) Screening computed tomography: will it result in overdiagnosis of renal carcinoma? Cancer 100:986–990

    Article  PubMed  Google Scholar 

  3. Zinreich SJ (2002) Imaging in laryngeal cancer: computed tomography, magnetic resonance imaging, positron emission tomography. Otolaryngol Clin North Am 35:971–991

    Article  PubMed  Google Scholar 

  4. Griffin N, Gore ME, Sohaib SA (2007) Imaging in metastatic renal cell carcinoma. AJR Am J Roentgenol 189:360–370

    Article  PubMed  Google Scholar 

  5. Padhani AR (2002) Functional MRI for anticancer therapy assessment. Eur J Cancer 38:2116–2127

    Article  PubMed  CAS  Google Scholar 

  6. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  7. Gollob JA, Bonomi P (2006) Historic evidence and future directions in clinical trial therapy of solid tumors. Oncology (Williston Park) 20:10–18

    Google Scholar 

  8. Khamly KK, Hicks RJ, McArthur GA, Thomas DM (2008) The promise of PET in clinical management and as a sensitive test for drug cytotoxicity in sarcomas. Expert Rev Mol Diagn 8:105–119

    Article  PubMed  CAS  Google Scholar 

  9. Nihashi T, Hayasaka K, Itou T, Sobajima T, Kato R, Ito K, Ito Y, Ishigaki T, Naganawa S (2007) Usefulness of FDG PET for diagnosis and radiotherapy of the patient with malignant lymphoma involving bone marrow. Radiat Med 25:130–134

    Article  PubMed  Google Scholar 

  10. Ung YC, Maziak DE, Vanderveen JA, Smith CA, Gulenchyn K, Lacchetti C, Evans WK (2007) 18 Fluorodeoxyglucose positron emission tomography in the diagnosis and staging of lung cancer: a systematic review. J Natl Cancer Inst 99:1753–1767

    Article  PubMed  Google Scholar 

  11. Chong S, Lee KS (2007) Spectrum of findings and usefulness of integrated PET/CT in patients with known or suspected neuroendocrine tumors of the lung. Cancer Imaging 7:195–201

    Article  PubMed  Google Scholar 

  12. van Waarde A, Cobben DC, Suurmeijer AJ, Maas B, Vaalburg W, de Vries EF, Jager PL, Hoekstra HJ, Elsinga PH (2004) Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med 45:695–700

    PubMed  Google Scholar 

  13. Salskov A, Tammisetti VS, Grierson J, Vesselle H (2007) FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3′-deoxy-3′-[18F]fluorothymidine. Semin Nucl Med 37:429–439

    Article  PubMed  Google Scholar 

  14. Been LB, Suurmeijer AJ, Cobben DC, Jager PL, Hoekstra HJ, Elsinga PH (2004) [18F]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging 31:1659–1672

    Article  PubMed  Google Scholar 

  15. Meiler J, Schuler M (2006) Therapeutic targeting of apoptotic pathways in cancer. Curr Drug Targets 7:1361–1369

    Article  PubMed  CAS  Google Scholar 

  16. Hu W, Kavanagh JJ (2003) Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 4:721–729

    Article  PubMed  CAS  Google Scholar 

  17. Fernandez-Luna JL (2007) Apoptosis regulators as targets for cancer therapy. Clin Transl Oncol 9:555–562

    Article  PubMed  CAS  Google Scholar 

  18. Thiagarajan P, Tait JF (1990) Binding of annexin V/placental anticoagulant protein I to platelets. Evidence for phosphatidylserine exposure in the procoagulant response of activated platelets. J Biol Chem 265:17420–17423

    PubMed  CAS  Google Scholar 

  19. Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM (2001) Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 7:1241–1244

    Article  PubMed  CAS  Google Scholar 

  20. Vermeersch H, Loose D, Lahorte C, Mervillie K, Dierckx R, Steinmetz N, Vanderheyden JL, Cuvelier C, Slegers G, van de Wiele C (2004) 99mTc-HYNIC Annexin-V imaging of primary head and neck carcinoma. Nucl Med Commun 25:259–263

    Article  PubMed  Google Scholar 

  21. Faust A, Wagner S, Law MP, Hermann S, Schnockel U, Keul P, Schober O, Schafers M, Levkau B, Kopka K (2007) The nonpeptidyl caspase binding radioligand (S)-1-(4-(2-[18F]Fluoroethoxy)-benzyl)-5-[1-(2-methoxymethylpyrrolidinyl)s ulfonyl]isatin ([18F]CbR) as potential positron emission tomography-compatible apoptosis imaging agent. Q J Nucl Med Mol Imaging 51:67–73

    PubMed  CAS  Google Scholar 

  22. Cohen A, Ziv I, Aloya T, Levin G, Kidron D, Grimberg H, Reshef A, Shirvan A (2007) Monitoring of chemotherapy-induced cell death in melanoma tumors by N, N′-didansyl-l-cystine. Technol Cancer Res Treat 6:221–234

    PubMed  CAS  Google Scholar 

  23. Aloya R, Grimberg H, Reshef A, Levin G, Kidron D, Cohen A, Ziv I (2006) Molecular imaging of cell death in vivo by a novel small molecule probe. Apoptosis 11:2089–2101

    Article  PubMed  Google Scholar 

  24. Damianovich M, Ziv I, Heyman SN, Rosen S, Shina A, Kidron D, Aloya T, Grimberg H, Levin G, Reshef A, Bentolila A, Cohen A, Shirvan A (2005) ApoSense: a novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis. Eur J Nucl Med Mol Imaging 33:281–289

    Article  PubMed  Google Scholar 

  25. Reshef A, Shirvan A, Grimberg H, Levin G, Cohen A, Mayk A, Kidron D, Djaidetti R, Melamed E, Ziv I (2007) Novel molecular imaging of cell death in experimental cerebral stoke. Brain Res 1144:156–164

    Article  PubMed  CAS  Google Scholar 

  26. Reshef A, Shirvan A, Waterhouse RN, Grimberg H, Levin G, Cohen A, Ulysse LG, Friedman G, Antoni G, Ziv I (2008) Molecular imaging of neurovascular cell death in experimental cerebral stroke by PET. J Nucl Med 49:1520–1528

    Article  PubMed  CAS  Google Scholar 

  27. Reshef A, Shirvan A, Shohami E, Grimberg H, Levin G, Cohen A, Trembovler V, Ziv I (2008) Targeting cell death in vivo in experimental traumatic brain injury by a novel molecular probe. J Neurotrauma 25:569–580

    Article  PubMed  Google Scholar 

  28. Bevers EM, Comfurius P, Dekkers DW, Zwaal RF (1999) Lipid translocation across the plasma membrane of mammalian cells. Biochim Biophys Acta 1439:317–330

    PubMed  CAS  Google Scholar 

  29. Sahu SK, Gummadi SN, Manoj N, Aradhyam GK (2007) Phospholipid scramblases: an overview. Arch Biochem Biophys 462:103–114

    Article  PubMed  CAS  Google Scholar 

  30. Nagata S, Golstein P (1995) The fas death factor. Science 267:1449–1456

    Article  PubMed  CAS  Google Scholar 

  31. Suttie JW (1980) Mechanism of action of vitamin K: synthesis of gamma-carboxyglutamic acid. CRC Crit Rev Biochem 8:191–223

    Article  PubMed  CAS  Google Scholar 

  32. Stirling Y (1995) Warfarin-induced changes in procoagulant and anticoagulant proteins. Blood Coagul Fibrinolysis 6:361–373

    Article  PubMed  CAS  Google Scholar 

  33. Waterhouse RN, Mardon K, O’Brien JC (1997) Synthesis and preliminary evaluation of [123I]1-(4-cyanobenzyl)-4-[[(trans-iodopropen-2-yl)oxy]methyl]piperidin e: a novel high affinity sigma receptor radioligand for SPECT. Nucl Med Biol 24:45–51

    Article  PubMed  CAS  Google Scholar 

  34. Waterhouse RN, Chang RC, Atuehene N, Collier TL (2007) In vitro and in vivo binding of neuroactive steroids to the sigma-1 receptor as measured with the positron emission tomography radioligand [18F]FPS. Synapse 61:540–546

    Article  PubMed  CAS  Google Scholar 

  35. Madras BK, Gracz LM, Fahey MA, Elmaleh D, Meltzer PC, Liang AY, Stopa EG, Babich J, Fischman AJ (1998) Altropane, a SPECT or PET imaging probe for dopamine neurons: III. Human dopamine transporter in postmortem normal and Parkinson’s diseased brain. Synapse 29:116–127

    Article  PubMed  CAS  Google Scholar 

  36. Vakifahmetoglu H, Olsson M, Zhivotovsky B (2008) Death through a tragedy: mitotic catastrophe. Cell Death Differ 15:1153–1162

    Article  PubMed  CAS  Google Scholar 

  37. Mansilla S, Bataller M, Portugal J (2006) Mitotic catastrophe as a consequence of chemotherapy. Anticancer Agents Med Chem 6:589–602

    Article  PubMed  CAS  Google Scholar 

  38. Amaravadi RK, Thompson CB (2007) The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res 13:7271–7279

    Article  PubMed  CAS  Google Scholar 

  39. Fang K, Chiu CC, Li CH, Chang YT, Hwang HT (2007) Cisplatin-induced senescence and growth inhibition in human non-small cell lung cancer cells with ectopic transfer of p16INK4a. Oncol Res 16:479–488

    Article  PubMed  CAS  Google Scholar 

  40. Michalakis J, Georgatos SD, Romanos J, Koutala H, Georgoulias V, Tsiftsis D, Theodoropoulos PA (2005) Micromolar taxol, with or without hyperthermia, induces mitotic catastrophe and cell necrosis in HeLa cells. Cancer Chemother Pharmacol 56:615–622

    Article  PubMed  CAS  Google Scholar 

  41. Brown JM, Attardi LD (2005) The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5:231–237

    Article  PubMed  CAS  Google Scholar 

  42. Kim R, Emi M, Tanabe K (2006) The role of apoptosis in cancer cell survival and therapeutic outcome. Cancer Biol Ther 5:1429–1442

    Article  PubMed  CAS  Google Scholar 

  43. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

ML-9 is an investigational imaging product developed by Aposende Ltd (formerly NST Ltd.), and all authors receive personal compensation from Aposense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merav Yogev-Falach.

Additional information

H. Grimberg, G. Levin and A. Shirvan contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimberg, H., Levin, G., Shirvan, A. et al. Monitoring of tumor response to chemotherapy in vivo by a novel small-molecule detector of apoptosis. Apoptosis 14, 257–267 (2009). https://doi.org/10.1007/s10495-008-0293-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0293-7

Keywords

Navigation