Skip to main content

Advertisement

Log in

HTLV-1 and apoptosis: role in cellular transformation and recent advances in therapeutic approaches

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

A universal cellular defense mechanism against viral invasion is the elimination of infected cells through apoptotic cell death. To counteract host defenses many viruses have evolved complex apoptosis evasion strategies. The oncogenic human retrovirus HTLV-1 is the etiological agent of adult-T-cell leukemia/lymphoma (ATLL) and the neurodegenerative disease known as HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The poor prognosis in HTLV-1-induced ATLL is linked to the resistance of neoplastic T cells against conventional therapies and the immuno-compromised state of patients. Nevertheless, several studies have shown that the apoptotic pathway is largely intact and can be reactivated in ATLL tumor cells to induce specific killing. A better understanding of the molecular mechanisms employed by HTLV-1 to counteract cellular death pathways remains an important challenge for future therapies and the treatment of HTLV-1-associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  2. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    PubMed  CAS  Google Scholar 

  3. Hardwick JM, Bellows DS (2003) Viral versus cellular BCL-2 proteins. Cell Death Differ 10(Suppl 1):S68–S76

    PubMed  CAS  Google Scholar 

  4. Benedict CA, Norris PS, Ware CF (2002) To kill or be killed: viral evasion of apoptosis. Nat Immunol 3:1013–1018

    PubMed  CAS  Google Scholar 

  5. Boya P, Pauleau AL, Poncet D, Gonzalez-Polo RA, Zamzami N, Kroemer G (2004) Viral proteins targeting mitochondria: controlling cell death. Biochim Biophys Acta 1659:178–189

    PubMed  CAS  Google Scholar 

  6. Roulston A, Marcellus RC, Branton PE (1999) Viruses and apoptosis. Annu Rev Microbiol 53:577–628

    PubMed  CAS  Google Scholar 

  7. Taylor JM, Barry M (2006) Near death experiences: poxvirus regulation of apoptotic death. Virology 344:139–150

    PubMed  CAS  Google Scholar 

  8. Danthi P, Kobayashi T, Holm GH, Hansberger MW, Abel TW, Dermody TS (2008) Reovirus apoptosis and virulence are regulated by host cell membrane penetration efficiency. J Virol 82:161–172

    PubMed  CAS  Google Scholar 

  9. Eckardt-Michel J, Lorek M, Baxmann D, Grunwald T, Keil GM, Zimmer G (2008) The fusion protein of respiratory syncytial virus triggers p53-dependent apoptosis. J Virol 82:3236–3249

    PubMed  CAS  Google Scholar 

  10. Franchini G (1995) Molecular mechanisms of human T-cell leukemia/lymphotropic virus type I infection. Blood 86:3619–3639

    PubMed  CAS  Google Scholar 

  11. Nicot C (2005) Current views in HTLV-I-associated adult T-cell leukemia/lymphoma. Am J Hematol 78:232–239

    PubMed  Google Scholar 

  12. Kiwaki T, Umehara F, Arimura Y, Izumo S, Arimura K, Itoh K et al (2003) The clinical and pathological features of peripheral neuropathy accompanied with HTLV-I associated myelopathy. J Neurol Sci 206:17–21

    PubMed  CAS  Google Scholar 

  13. Nakagawa M, Izumo S, Ijichi S, Kubota H, Arimura K, Kawabata M et al (1995) HTLV-I-associated myelopathy: analysis of 213 patients based on clinical features and laboratory findings. J Neurovirol 1:50–61

    PubMed  CAS  Google Scholar 

  14. Yang YC, Hsu TY, Lin RH, Su IJ, Chen JY, Yang CS (2002) Resistance to tumor necrosis factor-alpha-induced apoptosis in human T-lymphotropic virus type I-infected T cell lines. AIDS Res Hum Retroviruses 18:207–212

    PubMed  CAS  Google Scholar 

  15. Copeland KF, Haaksma AG, Goudsmit J, Krammer PH, Heeney JL (1994) Inhibition of apoptosis in T cells expressing human T cell leukemia virus type I Tax. AIDS Res Hum Retroviruses 10:1259–1268

    PubMed  CAS  Google Scholar 

  16. Kishi S, Saijyo S, Arai M, Karasawa S, Ueda S, Kannagi M et al (1997) Resistance to fas-mediated apoptosis of peripheral T cells in human T lymphocyte virus type I (HTLV-I) transgenic mice with autoimmune arthropathy. J Exp Med 186:57–64

    PubMed  CAS  Google Scholar 

  17. Park HU, Jeong SJ, Jeong JH, Chung JH, Brady JN (2006) Human T-cell leukemia virus type 1 Tax attenuates gamma-irradiation-induced apoptosis through physical interaction with Chk2. Oncogene 25:438–447

    PubMed  CAS  Google Scholar 

  18. Hasegawa H, Yamada Y, Harasawa H, Tsuji T, Murata K, Sugahara K et al (2005) Sensitivity of adult T-cell leukaemia lymphoma cells to tumour necrosis factor-related apoptosis-inducing ligand. Br J Haematol 128:253–265

    PubMed  CAS  Google Scholar 

  19. Tsuda H, Huang RW, Takatsuki K (1993) Interleukin-2 prevents programmed cell death in adult T-cell leukemia cells. Jpn J Cancer Res 84:431–437

    PubMed  CAS  Google Scholar 

  20. Tamiya S, Etoh K, Suzushima H, Takatsuki K, Matsuoka M (1998) Mutation of CD95 (Fas/Apo-1) gene in adult T-cell leukemia cells. Blood 91:3935–3942

    PubMed  CAS  Google Scholar 

  21. Maeda T, Yamada Y, Moriuchi R, Sugahara K, Tsuruda K, Joh T et al (1999) Fas gene mutation in the progression of adult T cell leukemia. J Exp Med 189:1063–1071

    PubMed  CAS  Google Scholar 

  22. Arai M, Kannagi M, Matsuoka M, Sato T, Yamamoto N, Fujii M (1998) Expression of FAP-1 (Fas-associated phosphatase) and resistance to Fas-mediated apoptosis in T cell lines derived from human T cell leukemia virus type 1-associated myelopathy/tropical spastic paraparesis patients. AIDS Res Hum Retroviruses 14:261–267

    PubMed  CAS  Google Scholar 

  23. Hamasaki S, Nakamura T, Furuya T, Kawakami A, Ichinose K, Nakashima T et al (2001) Resistance of CD4-positive T lymphocytes to etoposide-induced apoptosis mediated by upregulation of Bcl-xL expression in patients with HTLV-I-associated myelopathy. J Neuroimmunol 117:143–148

    PubMed  CAS  Google Scholar 

  24. Kawahigashi N, Furukawa Y, Saito M, Usuku K, Osame M (1998) Predominant expression of Fas ligand mRNA in CD8+ T lymphocytes in patients with HTLV-1 associated myelopathy. J Neuroimmunol 90:199–206

    PubMed  CAS  Google Scholar 

  25. Chen X, Zachar V, Zdravkovic M, Guo M, Ebbesen P, Liu X (1997) Role of the Fas/Fas ligand pathway in apoptotic cell death induced by the human T cell lymphotropic virus type I Tax transactivator. J Gen Virol 78( Pt 12):3277–3285

    PubMed  CAS  Google Scholar 

  26. Banerjee P, Rochford R, Antel J, Canute G, Wrzesinski S, Sieburg M et al (2007) Proinflammatory cytokine gene induction by human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 Tax in primary human glial cells. J Virol 81:1690–1700

    PubMed  CAS  Google Scholar 

  27. Tomaru U, Ikeda H, Jiang X, Ohya O, Yoshiki T (2003) Provirus expansion and deregulation of apoptosis-related genes in the spinal cord of a rat model for human T-lymphocyte virus type I-associated myeloneuropathy. J Neurovirol 9:530–538

    PubMed  CAS  Google Scholar 

  28. Ohya O, Tomaru U, Yamashita I, Kasai T, Morita K, Ikeda H et al (1997) HTLV-I induced myeloneuropathy in WKAH rats: apoptosis and local activation of the HTLV-I pX and TNF-alpha genes implicated in the pathogenesis. Leukemia 11(Suppl 3):255–257

    PubMed  Google Scholar 

  29. Nicot C, Harrod RL, Ciminale V, Franchini G (2005) Human T-cell leukemia/lymphoma virus type 1 nonstructural genes and their functions. Oncogene 24:6026–6034

    PubMed  CAS  Google Scholar 

  30. Zhao LJ, Giam CZ (1992) Human T-cell lymphotropic virus type I (HTLV-I) transcriptional activator, Tax, enhances CREB binding to HTLV-I 21-base-pair repeats by protein-protein interaction. Proc Natl Acad Sci USA 89:7070–7074

    PubMed  CAS  Google Scholar 

  31. Suzuki T, Fujisawa JI, Toita M, Yoshida M (1993) The trans-activator tax of human T-cell leukemia virus type 1 (HTLV-1) interacts with cAMP-responsive element (CRE) binding and CRE modulator proteins that bind to the 21-base-pair enhancer of HTLV-1. Proc Natl Acad Sci USA 90:610–614

    PubMed  CAS  Google Scholar 

  32. Bex F, Yin MJ, Burny A, Gaynor RB (1998) Differential transcriptional activation by human T-cell leukemia virus type 1 Tax mutants is mediated by distinct interactions with CREB binding protein and p300. Mol Cell Biol 18:2392–2405

    PubMed  CAS  Google Scholar 

  33. Jiang H, Lu H, Schiltz RL, Pise-Masison CA, Ogryzko VV, Nakatani Y et al (1999) PCAF interacts with tax and stimulates tax transactivation in a histone acetyltransferase-independent manner. Mol Cell Biol 19:8136–8145

    PubMed  CAS  Google Scholar 

  34. Franklin AA, Kubik MF, Uittenbogaard MN, Brauweiler A, Utaisincharoen P, Matthews MA et al (1993) Transactivation by the human T-cell leukemia virus Tax protein is mediated through enhanced binding of activating transcription factor-2 (ATF-2) ATF-2 response and cAMP element-binding protein (CREB). J Biol Chem 268:21225–21231

    PubMed  CAS  Google Scholar 

  35. Hall WW, Fujii M (2005) Deregulation of cell-signaling pathways in HTLV-1 infection. Oncogene 24:5965–5975

    PubMed  CAS  Google Scholar 

  36. Grassmann R, Aboud M, Jeang KT (2005) Molecular mechanisms of cellular transformation by HTLV-1 Tax. Oncogene 24:5976–5985

    PubMed  CAS  Google Scholar 

  37. Marriott SJ, Semmes OJ (2005) Impact of HTLV-I Tax on cell cycle progression and the cellular DNA damage repair response. Oncogene 24:5986–5995

    PubMed  CAS  Google Scholar 

  38. Suzuki T, Uchida-Toita M, Andoh T, Yoshida M (2000) HTLV-1 tax oncoprotein binds to DNA topoisomerase I and inhibits its catalytic activity. Virology 270:291–298

    PubMed  CAS  Google Scholar 

  39. Jeang KT, Widen SG, Semmes OJ, Wilson SH (1990) HTLV-I trans-activator protein, tax, is a trans-repressor of the human beta-polymerase gene. Science 247:1082–1084

    PubMed  CAS  Google Scholar 

  40. Ballard DW, Bohnlein E, Lowenthal JW, Wano Y, Franza BR, Greene WC (1988) HTLV-I tax induces cellular proteins that activate the kappa B element in the IL-2 receptor alpha gene. Science 241:1652–1655

    PubMed  CAS  Google Scholar 

  41. Leung K, Nabel GJ (1988) HTLV-1 transactivator induces interleukin-2 receptor expression through an NF-kappa B-like factor. Nature 333:776–778

    PubMed  CAS  Google Scholar 

  42. Iha H, Kibler KV, Yedavalli VR, Peloponese JM, Haller K, Miyazato A et al (2003) Segregation of NF-kappaB activation through NEMO/IKKgamma by Tax and TNFalpha: implications for stimulus-specific interruption of oncogenic signaling. Oncogene 22:8912–8923

    PubMed  CAS  Google Scholar 

  43. Lacoste J, Petropoulos L, Pepin N, Hiscott J (1995) Constitutive phosphorylation and turnover of I kappa B alpha in human T-cell leukemia virus type I-infected and Tax-expressing T cells. J Virol 69:564–569

    PubMed  CAS  Google Scholar 

  44. Sun SC, Elwood J, Beraud C, Greene WC (1994) Human T-cell leukemia virus type I Tax activation of NF-kappa B/Rel involves phosphorylation and degradation of I kappa B alpha and RelA (p65)-mediated induction of the c-rel gene. Mol Cell Biol 14:7377–7384

    PubMed  CAS  Google Scholar 

  45. Maggirwar SB, Harhaj E, Sun SC (1995) Activation of NF-kappa B/Rel by Tax involves degradation of I kappa B alpha and is blocked by a proteasome inhibitor. Oncogene 11:993–998

    PubMed  CAS  Google Scholar 

  46. Mukherjee S, Negi VS, Keitany G, Tanaka Y, Orth K (2008) In vitro activation of the IKK complex by HTLV-1 Tax. J Biol Chem (epub ahead of print), January 26, 2008

  47. Xiao G, Cvijic ME, Fong A, Harhaj EW, Uhlik MT, Waterfield M et al (2001) Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells: evidence for the involvement of IKKalpha. EMBO J 20:6805–6815

    PubMed  CAS  Google Scholar 

  48. Beraud C, Sun SC, Ganchi P, Ballard DW, Greene WC (1994) Human T-cell leukemia virus type I Tax associates with and is negatively regulated by the NF-kappa B2 p100 gene product: implications for viral latency. Mol Cell Biol 14:1374–1382

    PubMed  CAS  Google Scholar 

  49. Suzuki T, Hirai H, Fujisawa J, Fujita T, Yoshida M (1993) A trans-activator Tax of human T-cell leukemia virus type 1 binds to NF-kappa B p50 and serum response factor (SRF) and associates with enhancer DNAs of the NF-kappa B site and CArG box. Oncogene 8:2391–2397

    PubMed  CAS  Google Scholar 

  50. Hirai H, Fujisawa J, Suzuki T, Ueda K, Muramatsu M, Tsuboi A et al (1992) Transcriptional activator Tax of HTLV-1 binds to the NF-kappa B precursor p105. Oncogene 7:1737–1742

    PubMed  CAS  Google Scholar 

  51. Suzuki T, Hirai H, Yoshida M (1994) Tax protein of HTLV-1 interacts with the Rel homology domain of NF-kappa B p65 and c-Rel proteins bound to the NF-kappa B binding site and activates transcription. Oncogene 9:3099–3105

    PubMed  CAS  Google Scholar 

  52. Bex F, McDowall A, Burny A, Gaynor R (1997) The human T-cell leukemia virus type 1 transactivator protein Tax colocalizes in unique nuclear structures with NF-kappaB proteins. J Virol 71:3484–3497

    PubMed  CAS  Google Scholar 

  53. Mori N, Fujii M, Cheng G, Ikeda S, Yamasaki Y, Yamada Y et al (2001) Human T-cell leukemia virus type I tax protein induces the expression of anti-apoptotic gene Bcl-xL in human T-cells through nuclear factor-kappaB and c-AMP responsive element binding protein pathways. Virus Genes 22:279–287

    PubMed  CAS  Google Scholar 

  54. Tsukahara T, Kannagi M, Ohashi T, Kato H, Arai M, Nunez G et al (1999) Induction of Bcl-x(L) expression by human T-cell leukemia virus type 1 Tax through NF-kappaB in apoptosis-resistant T-cell transfectants with Tax. J Virol 73:7981–7987

    PubMed  CAS  Google Scholar 

  55. Nicot C, Mahieux R, Takemoto S, Franchini G (2000) Bcl-X(L) is up-regulated by HTLV-I and HTLV-II in vitro and in ex vivo ATLL samples. Blood 96:275–281

    PubMed  CAS  Google Scholar 

  56. Portis T, Harding JC, Ratner L (2001) The contribution of NF-kappa B activity to spontaneous proliferation and resistance to apoptosis in human T-cell leukemia virus type 1 Tax-induced tumors. Blood 98:1200–1208

    PubMed  CAS  Google Scholar 

  57. Kawakami A, Nakashima T, Sakai H, Urayama S, Yamasaki S, Hida A et al (1999) Inhibition of caspase cascade by HTLV-I tax through induction of NF-kappaB nuclear translocation. Blood 94:3847–3854

    PubMed  CAS  Google Scholar 

  58. Waldele K, Silbermann K, Schneider G, Ruckes T, Cullen BR, Grassmann R (2006) Requirement of the human T-cell leukemia virus (HTLV-1) tax-stimulated HIAP-1 gene for the survival of transformed lymphocytes. Blood 107:4491–4499

    PubMed  Google Scholar 

  59. Kawata S, Ariumi Y, Shimotohno K (2003) p21(Waf1/Cip1/Sdi1) prevents apoptosis as well as stimulates growth in cells transformed or immortalized by human T-cell leukemia virus type 1-encoded tax. J Virol 77:7291–7299

    PubMed  CAS  Google Scholar 

  60. Pichler K, Kattan T, Gentzsch J, Kress AK, Taylor GP, Bangham CR et al (2008) Strong induction of 4-1BB, a growth and survival promoting costimulatory receptor, in HTLV-1-infected cultured and patients’ T-cells by the viral Tax oncoprotein. Blood (epub ahead of print), February 14, 2008

  61. Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN (2005) Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene 24:6719–6728

    PubMed  CAS  Google Scholar 

  62. Liu Y, Wang Y, Yamakuchi M, Masuda S, Tokioka T, Yamaoka S et al (2001) Phosphoinositide-3 kinase-PKB/Akt pathway activation is involved in fibroblast Rat-1 transformation by human T-cell leukemia virus type I tax. Oncogene 20:2514–2526

    PubMed  CAS  Google Scholar 

  63. Peloponese JM Jr, Jeang KT (2006) Role for Akt/protein kinase B and activator protein-1 in cellular proliferation induced by the human T-cell leukemia virus type 1 tax oncoprotein. J Biol Chem 281:8927–8938

    PubMed  CAS  Google Scholar 

  64. Tomita M, Kikuchi A, Akiyama T, Tanaka Y, Mori N (2006) Human T-cell leukemia virus type 1 tax dysregulates beta-catenin signaling. J Virol 80:10497–10505

    PubMed  CAS  Google Scholar 

  65. Ikezoe T, Nishioka C, Bandobashi K, Yang Y, Kuwayama Y, Adachi Y et al (2007) Longitudinal inhibition of PI3K/Akt/mTOR signaling by LY294002 and rapamycin induces growth arrest of adult T-cell leukemia cells. Leuk Res 31:673–682

    PubMed  CAS  Google Scholar 

  66. Mori N, Fujii M, Iwai K, Ikeda S, Yamasaki Y, Hata T et al (2000) Constitutive activation of transcription factor AP-1 in primary adult T-cell leukemia cells. Blood 95:3915–3921

    PubMed  CAS  Google Scholar 

  67. Fujii M, Niki T, Mori T, Matsuda T, Matsui M, Nomura N et al (1991) HTLV-1 Tax induces expression of various immediate early serum responsive genes. Oncogene 6:1023–1029

    PubMed  CAS  Google Scholar 

  68. Krueger A, Fas SC, Giaisi M, Bleumink M, Merling A, Stumpf C et al (2006) HTLV-1 Tax protects against CD95-mediated apoptosis by induction of the cellular FLICE-inhibitory protein (c-FLIP). Blood 107:3933–3939

    PubMed  CAS  Google Scholar 

  69. Sinha-Datta U, Horikawa I, Michishita E, Datta A, Sigler-Nicot JC, Brown M et al (2004) Transcriptional activation of hTERT through the NF-kappaB pathway in HTLV-I-transformed cells. Blood 104:2523–2531

    PubMed  CAS  Google Scholar 

  70. Massard C, Zermati Y, Pauleau AL, Larochette N, Metivier D, Sabatier L et al (2006) hTERT: a novel endogenous inhibitor of the mitochondrial cell death pathway. Oncogene 25:4505–4514

    PubMed  CAS  Google Scholar 

  71. Akl H, Badran BM, Zein NE, Bex F, Sotiriou C, Willard-Gallo KE et al (2007) HTLV-I infection of WE17/10 CD4+ cell line leads to progressive alteration of Ca2+ influx that eventually results in loss of CD7 expression and activation of an antiapoptotic pathway involving AKT and BAD which paves the way for malignant transformation. Leukemia 21:788–796

    PubMed  CAS  Google Scholar 

  72. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283

    PubMed  CAS  Google Scholar 

  73. Mahieux R, Pise-Masison CA, Nicot C, Green P, Hall WW, Brady JN (2000) Inactivation of p53 by HTLV type 1 and HTLV type 2 Tax trans-activators. AIDS Res Hum Retroviruses 16:1677–1681

    PubMed  CAS  Google Scholar 

  74. Pise-Masison CA, Mahieux R, Radonovich M, Jiang H, Duvall J, Guillerm C et al (2000) Insights into the molecular mechanism of p53 inhibition by HTLV type 1 Tax. AIDS Res Hum Retroviruses 16:1669–1675

    PubMed  CAS  Google Scholar 

  75. Nagai H, Kinoshita T, Imamura J, Murakami Y, Hayashi K, Mukai K et al (1991) Genetic alteration of p53 in some patients with adult T-cell leukemia. Jpn J Cancer Res 82:1421–1427

    PubMed  CAS  Google Scholar 

  76. Mesnard JM, Devaux C (1999) Multiple control levels of cell proliferation by human T-cell leukemia virus type 1 Tax protein. Virology 257:277–284

    PubMed  CAS  Google Scholar 

  77. Takemoto S, Trovato R, Cereseto A, Nicot C, Kislyakova T, Casareto L et al (2000) p53 stabilization and functional impairment in the absence of genetic mutation or the alteration of the p14(ARF)-MDM2 loop in ex vivo and cultured adult T-cell leukemia/lymphoma cells. Blood 95:3939–3944

    PubMed  CAS  Google Scholar 

  78. Pise-Masison CA, Brady JN (2005) Setting the stage for transformation: HTLV-1 Tax inhibition of p53 function. Front Biosci 10:919–930

    PubMed  CAS  Google Scholar 

  79. Datta A, Nicot C (2008) Telomere attrition induces a DNA double-strand break damage signal that reactivates p53 transcription in HTLV-I leukemic cells. Oncogene 27:1135–1141

    PubMed  CAS  Google Scholar 

  80. Haoudi A, Semmes OJ (2003) The HTLV-1 tax oncoprotein attenuates DNA damage induced G1 arrest and enhances apoptosis in p53 null cells. Virology 305:229–239

    PubMed  CAS  Google Scholar 

  81. Mulloy JC, Kislyakova T, Cereseto A, Casareto L, LoMonico A, Fullen J et al (1998) Human T-cell lymphotropic/leukemia virus type 1 Tax abrogates p53-induced cell cycle arrest and apoptosis through its CREB/ATF functional domain. J Virol 72:8852–8860

    PubMed  CAS  Google Scholar 

  82. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014

    PubMed  CAS  Google Scholar 

  83. Kao SY, Lemoine FJ, Mariott SJ (2000) HTLV-1 Tax protein sensitizes cells to apoptotic cell death induced by DNA damaging agents. Oncogene 19:2240–2248

    PubMed  CAS  Google Scholar 

  84. Kao SY, Lemoine FJ, Marriott SJ (2001) p53-independent induction of apoptosis by the HTLV-I tax protein following UV irradiation. Virology 291:292–298

    PubMed  CAS  Google Scholar 

  85. Chlichlia K, Busslinger M, Peter ME, Walczak H, Krammer PH, Schirrmacher V et al (1997) ICE-proteases mediate HTLV-I Tax-induced apoptotic T-cell death. Oncogene 14:2265–2272

    PubMed  CAS  Google Scholar 

  86. Yamada T, Yamaoka S, Goto T, Nakai M, Tsujimoto Y, Hatanaka M (1994) The human T-cell leukemia virus type I Tax protein induces apoptosis which is blocked by the Bcl-2 protein. J Virol 68:3374–3379

    PubMed  CAS  Google Scholar 

  87. Nicot C, Harrod R (2000) Distinct p300-responsive mechanisms promote caspase-dependent apoptosis by human T-cell lymphotropic virus type 1 Tax protein. Mol Cell Biol 20:8580–8589

    PubMed  CAS  Google Scholar 

  88. Hall AP, Irvine J, Blyth K, Cameron ER, Onions DE, Campbell ME (1998) Tumours derived from HTLV-I tax transgenic mice are characterized by enhanced levels of apoptosis and oncogene expression. J Pathol 186:209–214

    PubMed  CAS  Google Scholar 

  89. Franchini G, Wong-Staal F, Gallo RC (1984) Human T-cell leukemia virus (HTLV-I) transcripts in fresh and cultured cells of patients with adult T-cell leukemia. Proc Natl Acad Sci USA 81:6207–6211

    PubMed  CAS  Google Scholar 

  90. Kinoshita T, Shimoyama M, Tobinai K, Ito M, Ito S, Ikeda S et al (1989) Detection of mRNA for the tax1/rex1 gene of human T-cell leukemia virus type I in fresh peripheral blood mononuclear cells of adult T-cell leukemia patients and viral carriers by using the polymerase chain reaction. Proc Natl Acad Sci USA 86:5620–5624

    PubMed  CAS  Google Scholar 

  91. Tendler CL, Greenberg SJ, Blattner WA, Manns A, Murphy E, Fleisher T et al (1990) Transactivation of interleukin 2 and its receptor induces immune activation in human T-cell lymphotropic virus type I-associated myelopathy: pathogenic implications and a rationale for immunotherapy. Proc Natl Acad Sci USA 87:5218–5222

    PubMed  CAS  Google Scholar 

  92. Ciminale V, Zotti L, D’Agostino DM, Ferro T, Casareto L, Franchini G et al (1999) Mitochondrial targeting of the p13II protein coded by the x-II ORF of human T-cell leukemia/lymphotropic virus type I (HTLV-I). Oncogene 18:4505–4514

    PubMed  CAS  Google Scholar 

  93. Jacotot E, Ravagnan L, Loeffler M, Ferri KF, Vieira HL, Zamzami N et al (2000) The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J Exp Med 191:33–46

    PubMed  CAS  Google Scholar 

  94. Su F, Schneider RJ (1997) Hepatitis B virus HBx protein sensitizes cells to apoptotic killing by tumor necrosis factor alpha. Proc Natl Acad Sci USA 94:8744–8749

    PubMed  CAS  Google Scholar 

  95. Takada S, Shirakata Y, Kaneniwa N, Koike K (1999) Association of hepatitis B virus X protein with mitochondria causes mitochondrial aggregation at the nuclear periphery, leading to cell death. Oncogene 18:6965–6973

    PubMed  CAS  Google Scholar 

  96. Shirakata Y, Koike K (2003) Hepatitis B virus X protein induces cell death by causing loss of mitochondrial membrane potential. J Biol Chem 278:22071–22078

    PubMed  CAS  Google Scholar 

  97. Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I et al (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7:1306–1312

    PubMed  CAS  Google Scholar 

  98. Gibbs JS, Malide D, Hornung F, Bennink JR, Yewdell JW (2003) The influenza A virus PB1-F2 protein targets the inner mitochondrial membrane via a predicted basic amphipathic helix that disrupts mitochondrial function. J Virol 77:7214–7224

    PubMed  CAS  Google Scholar 

  99. Hiraragi H, Michael B, Nair A, Silic-Benussi M, Ciminale V, Lairmore M (2005) Human T-lymphotropic virus type 1 mitochondrion-localizing protein p13II sensitizes Jurkat T cells to Ras-mediated apoptosis. J Virol 79:9449–9457

    PubMed  CAS  Google Scholar 

  100. Lefebvre L, Vanderplasschen A, Ciminale V, Heremans H, Dangoisse O, Jauniaux JC et al (2002) Oncoviral bovine leukemia virus G4 and human T-cell leukemia virus type 1 p13(II) accessory proteins interact with farnesyl pyrophosphate synthetase. J Virol 76:1400–1414

    PubMed  CAS  Google Scholar 

  101. D’Agostino DM, Silic-Benussi M, Hiraragi H, Lairmore MD, Ciminale V (2005) The human T-cell leukemia virus type 1 p13II protein: effects on mitochondrial function and cell growth. Cell Death Differ 12(Suppl 1):905–915

    PubMed  CAS  Google Scholar 

  102. Cereghetti GM, Scorrano L (2006) The many shapes of mitochondrial death. Oncogene 25:4717–4724

    PubMed  CAS  Google Scholar 

  103. Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJ (2006) Role of Bax and Bak in mitochondrial morphogenesis. Nature 443:658–662

    PubMed  CAS  Google Scholar 

  104. Scorrano L (2005) Proteins that fuse and fragment mitochondria in apoptosis: con-fissing a deadly con-fusion? J Bioenerg Biomembr 37:165–170

    PubMed  CAS  Google Scholar 

  105. Sugioka R, Shimizu S, Tsujimoto Y (2004) Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem 279:52726–52734

    PubMed  CAS  Google Scholar 

  106. Nicot C, Dundr M, Johnson JM, Fullen JR, Alonzo N, Fukumoto R et al (2004) HTLV-1-encoded p30II is a post-transcriptional negative regulator of viral replication. Nat Med 10:197–201

    PubMed  CAS  Google Scholar 

  107. Michael B, Nair AM, Hiraragi H, Shen L, Feuer G, Boris-Lawrie K et al (2004) Human T lymphotropic virus type-1 p30II alters cellular gene expression to selectively enhance signaling pathways that activate T lymphocytes. Retrovirology 1:39

    PubMed  Google Scholar 

  108. Migone TS, Lin JX, Cereseto A, Mulloy JC, O’Shea JJ, Franchini G et al (1995) Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science 269:79–81

    PubMed  CAS  Google Scholar 

  109. Takemoto S, Mulloy JC, Cereseto A, Migone TS, Patel BK, Matsuoka M et al (1997) Proliferation of adult T cell leukemia/lymphoma cells is associated with the constitutive activation of JAK/STAT proteins. Proc Natl Acad Sci USA 94:13897–13902

    PubMed  CAS  Google Scholar 

  110. Debierre-Grockiego F (2004) Anti-apoptotic role of STAT5 in haematopoietic cells and in the pathogenesis of malignancies. Apoptosis 9:717–728

    PubMed  CAS  Google Scholar 

  111. Collins ND, D’Souza C, Albrecht B, Robek MD, Ratner L, Ding W et al (1999) Proliferation response to interleukin-2 and Jak/Stat activation of T cells immortalized by human T-cell lymphotropic virus type 1 is independent of open reading frame I expression. J Virol 73:9642–9649

    PubMed  CAS  Google Scholar 

  112. Albrecht B, Collins ND, Burniston MT, Nisbet JW, Ratner L, Green PL et al (2000) Human T-lymphotropic virus type 1 open reading frame I p12(I) is required for efficient viral infectivity in primary lymphocytes. J Virol 74:9828–9835

    PubMed  CAS  Google Scholar 

  113. Collins ND, Newbound GC, Albrecht B, Beard JL, Ratner L, Lairmore MD (1998) Selective ablation of human T-cell lymphotropic virus type 1 p12I reduces viral infectivity in vivo. Blood 91:4701–4707

    PubMed  CAS  Google Scholar 

  114. Nicot C, Mulloy JC, Ferrari MG, Johnson JM, Fu K, Fukumoto R et al (2001) HTLV-1 p12(I) protein enhances STAT5 activation and decreases the interleukin-2 requirement for proliferation of primary human peripheral blood mononuclear cells. Blood 98:823–829

    PubMed  CAS  Google Scholar 

  115. Mohapatra S, Chu B, Wei S, Djeu J, Epling-Burnette PK, Loughran T et al (2003) Roscovitine inhibits STAT5 activity and induces apoptosis in the human leukemia virus type 1-transformed cell line MT-2. Cancer Res 63:8523–8530

    PubMed  CAS  Google Scholar 

  116. Gaudray G, Gachon F, Basbous J, Biard-Piechaczyk M, Devaux C, Mesnard JM (2002) The complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription. J Virol 76:12813–12822

    PubMed  CAS  Google Scholar 

  117. Basbous J, Arpin C, Gaudray G, Piechaczyk M, Devaux C, Mesnard JM (2003) The HBZ factor of human T-cell leukemia virus type I dimerizes with transcription factors JunB and c-Jun and modulates their transcriptional activity. J Biol Chem 278:43620–43627

    PubMed  CAS  Google Scholar 

  118. Matsumoto J, Ohshima T, Isono O, Shimotohno K (2005) HTLV-1 HBZ suppresses AP-1 activity by impairing both the DNA-binding ability and the stability of c-Jun protein. Oncogene 24:1001–1010

    PubMed  CAS  Google Scholar 

  119. Lemasson I, Lewis MR, Polakowski N, Hivin P, Cavanagh MH, Thebault S et al (2007) Human T-cell leukemia virus type 1 (HTLV-1) bZIP protein interacts with the cellular transcription factor CREB to inhibit HTLV-1 transcription. J Virol 81:1543–1553

    PubMed  CAS  Google Scholar 

  120. Taylor GP, Matsuoka M (2005) Natural history of adult T-cell leukemia/lymphoma and approaches to therapy. Oncogene 24:6047–6057

    PubMed  CAS  Google Scholar 

  121. Mori N, Yamada Y, Ikeda S, Yamasaki Y, Tsukasaki K, Tanaka Y et al (2002) Bay 11-7082 inhibits transcription factor NF-kappaB and induces apoptosis of HTLV-I-infected T-cell lines and primary adult T-cell leukemia cells. Blood 100:1828–1834

    PubMed  CAS  Google Scholar 

  122. Sanda T, Asamitsu K, Ogura H, Iida S, Utsunomiya A, Ueda R et al (2006) Induction of cell death in adult T-cell leukemia cells by a novel IkappaB kinase inhibitor. Leukemia 20:590–598

    PubMed  CAS  Google Scholar 

  123. Satou Y, Nosaka K, Koya Y, Yasunaga JI, Toyokuni S, Matsuoka M (2004) Proteasome inhibitor, bortezomib, potently inhibits the growth of adult T-cell leukemia cells both in vivo and in vitro. Leukemia 18:1357–1363

    PubMed  CAS  Google Scholar 

  124. Mitra-Kaushik S, Harding JC, Hess JL, Ratner L (2004) Effects of the proteasome inhibitor PS-341 on tumor growth in HTLV-1 Tax transgenic mice and Tax tumor transplants. Blood 104:802–809

    PubMed  CAS  Google Scholar 

  125. Nasr R, El-Sabban ME, Karam JA, Dbaibo G, Kfoury Y, Arnulf B et al (2005) Efficacy and mechanism of action of the proteasome inhibitor PS-341 in T-cell lymphomas and HTLV-I associated adult T-cell leukemia/lymphoma. Oncogene 24:419–430

    PubMed  CAS  Google Scholar 

  126. Palombella VJ, Conner EM, Fuseler JW, Destree A, Davis JM, Laroux FS et al (1998) Role of the proteasome and NF-kappaB in streptococcal cell wall-induced polyarthritis. Proc Natl Acad Sci USA 95:15671–15676

    PubMed  CAS  Google Scholar 

  127. Strauss SJ, Maharaj L, Hoare S, Johnson PW, Radford JA, Vinnecombe S et al (2006) Bortezomib therapy in patients with relapsed or refractory lymphoma: potential correlation of in vitro sensitivity and tumor necrosis factor alpha response with clinical activity. J Clin Oncol 24:2105–2112

    PubMed  CAS  Google Scholar 

  128. Nishioka C, Ikezoe T, Yang J, Koeffler HP, Taguchi H (2007) Fludarabine induces apoptosis of human T-cell leukemia virus type 1-infected T cells via inhibition of the nuclear factor-kappaB signal pathway. Leukemia 21:1044–1049

    PubMed  CAS  Google Scholar 

  129. Dewan MZ, Uchihara JN, Terashima K, Honda M, Sata T, Ito M et al (2006) Efficient intervention of growth and infiltration of primary adult T-cell leukemia cells by an HIV protease inhibitor, ritonavir. Blood 107:716–724

    PubMed  CAS  Google Scholar 

  130. De Clercq E (2004) Antiviral drugs in current clinical use. J Clin Virol 30:115–133

    PubMed  Google Scholar 

  131. Jost PJ, Ruland J (2007) Aberrant NF-kappaB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood 109:2700–2707

    PubMed  CAS  Google Scholar 

  132. Nasr R, Rosenwald A, El-Sabban ME, Arnulf B, Zalloua P, Lepelletier Y et al (2003) Arsenic/interferon specifically reverses 2 distinct gene networks critical for the survival of HTLV-1-infected leukemic cells. Blood 101:4576–4582

    PubMed  CAS  Google Scholar 

  133. Mahieux R, Pise-Masison C, Gessain A, Brady JN, Olivier R, Perret E et al (2001) Arsenic trioxide induces apoptosis in human T-cell leukemia virus type 1- and type 2-infected cells by a caspase-3-dependent mechanism involving Bcl-2 cleavage. Blood 98:3762–3769

    PubMed  CAS  Google Scholar 

  134. Mahieux R, Hermine O (2005) In vivo and in vitro treatment of HTLV-1 and HTLV-2 infected cells with arsenic trioxide and interferon-alpha. Leuk Lymphoma 46:347–355

    PubMed  CAS  Google Scholar 

  135. Chen YC, Lin-Shiau SY, Lin JK (1998) Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol 177:324–333

    PubMed  CAS  Google Scholar 

  136. El-Sabban ME, Nasr R, Dbaibo G, Hermine O, Abboushi N, Quignon F et al (2000) Arsenic-interferon-alpha-triggered apoptosis in HTLV-I transformed cells is associated with tax down-regulation and reversal of NF-kappa B activation. Blood 96:2849–2855

    PubMed  CAS  Google Scholar 

  137. Bazarbachi A, El-Sabban ME, Nasr R, Quignon F, Awaraji C, Kersual J et al (1999) Arsenic trioxide and interferon-alpha synergize to induce cell cycle arrest and apoptosis in human T-cell lymphotropic virus type I-transformed cells. Blood 93:278–283

    PubMed  CAS  Google Scholar 

  138. Ishitsuka K, Hanada S, Uozumi K, Utsunomiya A, Arima T (2000) Arsenic trioxide and the growth of human T-cell leukemia virus type I infected T-cell lines. Leuk Lymphoma 37:649–655

    PubMed  CAS  Google Scholar 

  139. Brown M, Bellon M, Nicot C (2007) Emodin and DHA potently increase arsenic trioxide interferon-alpha-induced cell death of HTLV-I-transformed cells by generation of reactive oxygen species and inhibition of Akt and AP-1. Blood 109:1653–1659

    PubMed  CAS  Google Scholar 

  140. Rajasingh J, Raikwar HP, Muthian G, Johnson C, Bright JJ (2006) Curcumin induces growth-arrest and apoptosis in association with the inhibition of constitutively active JAK-STAT pathway in T cell leukemia. Biochem Biophys Res Commun 340:359–368

    PubMed  CAS  Google Scholar 

  141. Tomita M, Kawakami H, Uchihara JN, Okudaira T, Masuda M, Matsuda T et al (2006) Inhibition of constitutively active Jak-Stat pathway suppresses cell growth of human T-cell leukemia virus type 1-infected T-cell lines and primary adult T-cell leukemia cells. Retrovirology 3:22

    PubMed  Google Scholar 

  142. Tomita M, Kawakami H, Uchihara JN, Okudaira T, Masuda M, Takasu N et al (2006) Curcumin (diferuloylmethane) inhibits constitutive active NF-kappaB, leading to suppression of cell growth of human T-cell leukemia virus type I-infected T-cell lines and primary adult T-cell leukemia cells. Int J Cancer 118:765–772

    PubMed  CAS  Google Scholar 

  143. Tomita M, Matsuda T, Kawakami H, Uchihara JN, Okudaira T, Masuda M et al (2006) Curcumin targets Akt cell survival signaling pathway in HTLV-I-infected T-cell lines. Cancer Sci 97:322–327

    PubMed  CAS  Google Scholar 

  144. Kirken RA, Erwin RA, Wang L, Wang Y, Rui H, Farrar WL (2000) Functional uncoupling of the Janus kinase 3-Stat5 pathway in malignant growth of human T cell leukemia virus type 1-transformed human T cells. J Immunol 165:5097–5104

    PubMed  CAS  Google Scholar 

  145. Kawakami H, Tomita M, Okudaira T, Ishikawa C, Matsuda T, Tanaka Y et al (2007) Inhibition of heat shock protein-90 modulates multiple functions required for survival of human T-cell leukemia virus type I-infected T-cell lines and adult T-cell leukemia cells. Int J Cancer 120:1811–1820

    PubMed  CAS  Google Scholar 

  146. Banerji U, O’Donnell A, Scurr M, Pacey S, Stapleton S, Asad Y et al (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 23:4152–4161

    PubMed  CAS  Google Scholar 

  147. Yonehara S, Ishii A, Yonehara M (1989) A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 169:1747–1756

    PubMed  CAS  Google Scholar 

  148. Debatin KM, Goldman CK, Waldmann TA, Krammer PH (1993) APO-1-induced apoptosis of leukemia cells from patients with adult T-cell leukemia. Blood 81:2972–2977

    PubMed  CAS  Google Scholar 

  149. Debatin KM, Goldmann CK, Bamford R, Waldmann TA, Krammer PH (1990) Monoclonal-antibody-mediated apoptosis in adult T-cell leukaemia. Lancet 335:497–500

    PubMed  CAS  Google Scholar 

  150. Waldmann TA, White JD, Goldman CK, Top L, Grant A, Bamford R et al (1993) The interleukin-2 receptor: a target for monoclonal antibody treatment of human T-cell lymphotrophic virus I-induced adult T-cell leukemia. Blood 82:1701–1712

    PubMed  CAS  Google Scholar 

  151. Waldmann TA, Goldman CK, Bongiovanni KF, Sharrow SO, Davey MP, Cease KB et al (1988) Therapy of patients with human T-cell lymphotrophic virus I-induced adult T-cell leukemia with anti-Tac, a monoclonal antibody to the receptor for interleukin-2. Blood 72:1805–1816

    PubMed  CAS  Google Scholar 

  152. Callens C, Moura IC, Lepelletier Y, Coulon S, Renand A, Dussiot M et al (2008) Recent advances in adult T-cell leukemia therapy: focus on a new anti-transferrin receptor monoclonal antibody. Leukemia 22:42–48

    PubMed  CAS  Google Scholar 

  153. Waldmann TA, White JD, Carrasquillo JA, Reynolds JC, Paik CH, Gansow OA et al (1995) Radioimmunotherapy of interleukin-2R alpha-expressing adult T-cell leukemia with Yttrium-90-labeled anti-Tac. Blood 86:4063–4075

    PubMed  CAS  Google Scholar 

  154. Waldmann TA (2007) Daclizumab (anti-Tac, Zenapax) in the treatment of leukemia/lymphoma. Oncogene 26:3699–3703

    PubMed  CAS  Google Scholar 

  155. Phillips KE, Herring B, Wilson LA, Rickford MS, Zhang M, Goldman CK et al (2000) IL-2Ralpha-Directed monoclonal antibodies provide effective therapy in a murine model of adult T-cell leukemia by a mechanism other than blockade of IL-2/IL-2Ralpha interaction. Cancer Res 60:6977–6984

    PubMed  CAS  Google Scholar 

  156. Tan C, Waldmann TA (2002) Proteasome inhibitor PS-341, a potential therapeutic agent for adult T-cell leukemia. Cancer Res 62:1083–1086

    PubMed  CAS  Google Scholar 

  157. Zhang Z, Zhang M, Goldman CK, Ravetch JV, Waldmann TA (2003) Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD52 monoclonal antibody, Campath-1H. Cancer Res 63:6453–6457

    PubMed  CAS  Google Scholar 

  158. Moura IC, Lepelletier Y, Arnulf B, England P, Baude C, Beaumont C et al (2004) A neutralizing monoclonal antibody (mAb A24) directed against the transferrin receptor induces apoptosis of tumor T lymphocytes from ATL patients. Blood 103:1838–1845

    PubMed  CAS  Google Scholar 

  159. Vidal C, Matsushita S, Colamonici OR, Trepel JB, Mitsuya H, Neckers LM (1988) Human T lymphotropic virus I infection deregulates surface expression of the transferrin receptor. J Immunol 141:984–988

    PubMed  CAS  Google Scholar 

  160. Maeda Y, Miyatake J, Sono H, Matsuda M, Tatsumi Y, Horiuchi F et al (1996) 13-cis retinoic acid inhibits growth of adult T cell leukemia cells and causes apoptosis; possible new indication for retinoid therapy. Intern Med 35:180–184

    PubMed  CAS  Google Scholar 

  161. Fujimura S, Suzumiya J, Anzai K, Ohkubo K, Hata T, Yamada Y et al (1998) Retinoic acids induce growth inhibition and apoptosis in adult T-cell leukemia (ATL) cell lines. Leuk Res 22:611–618

    PubMed  CAS  Google Scholar 

  162. Furuke K, Sasada T, Ueda-Taniguchi Y, Yamauchi A, Inamoto T, Yamaoka Y et al (1997) Role of intracellular redox status in apoptosis induction of human T-cell leukemia virus type I-infected lymphocytes by 13-cis-retinoic acid. Cancer Res 57:4916–4923

    PubMed  CAS  Google Scholar 

  163. Darwiche N, Hatoum A, Dbaibo G, Kadara H, Nasr R, Abou-Lteif G et al (2004) N-(4-hydroxyphenyl)retinamide induces growth arrest and apoptosis in HTLV-I-transformed cells. Leukemia 18:607–615

    PubMed  CAS  Google Scholar 

  164. Boya P, Morales MC, Gonzalez-Polo RA, Andreau K, Gourdier I, Perfettini JL et al (2003) The chemopreventive agent N-(4-hydroxyphenyl)retinamide induces apoptosis through a mitochondrial pathway regulated by proteins from the Bcl-2 family. Oncogene 22:6220–6230

    PubMed  CAS  Google Scholar 

  165. Darwiche N, Abou-Lteif G, Bazarbachi A (2007) Reactive oxygen species mediate N-(4-hydroxyphenyl)retinamide-induced cell death in malignant T cells and are inhibited by the HTLV-I oncoprotein Tax. Leukemia 21:261–269

    PubMed  CAS  Google Scholar 

  166. Maeda Y, Yamaguchi T, Ueda S, Miyazato H, Matsuda M, Kanamaru A (2004) All-trans retinoic acid reduced skin involvement of adult T-cell leukemia. Leukemia 18:1159–1160

    PubMed  CAS  Google Scholar 

  167. Inozume T, Matsue H, Furuhashi M, Nakamura Y, Mitsui H, Ando N et al (2005) Successful use of etretinate for long-term management of a patient with cutaneous-type adult T-cell leukaemia/lymphoma. Br J Dermatol 153:1239–1241

    PubMed  CAS  Google Scholar 

  168. Nawata H, Maeda Y, Sumimoto Y, Miyatake J, Kanamaru A (2001) A mechanism of apoptosis induced by all-trans retinoic acid on adult T-cell leukemia cells: a possible involvement of the Tax/NF-kappaB signaling pathway. Leuk Res 25:323–331

    PubMed  CAS  Google Scholar 

  169. Darwiche N, El-Sabban M, Bazzi R, Nasr R, Al-Hashimi S, Hermine O et al (2001) Retinoic acid dramatically enhances the arsenic trioxide-induced cell cycle arrest and apoptosis in retinoic acid receptor alpha-positive human T-cell lymphotropic virus type-I-transformed cells. Hematol J 2:127–135

    PubMed  CAS  Google Scholar 

  170. Gill PS, Harrington W Jr, Kaplan MH, Ribeiro RC, Bennett JM, Liebman HA et al (1995) Treatment of adult T-cell leukemia-lymphoma with a combination of interferon alfa and zidovudine. N Engl J Med 332:1744–1748

    PubMed  CAS  Google Scholar 

  171. Hermine O, Bouscary D, Gessain A, Turlure P, Leblond V, Franck N et al (1995) Brief report: treatment of adult T-cell leukemia-lymphoma with zidovudine and interferon alfa. N Engl J Med 332:1749–1751

    PubMed  CAS  Google Scholar 

  172. Bazarbachi A, Nasr R, El-Sabban ME, Mahe A, Mahieux R, Gessain A et al (2000) Evidence against a direct cytotoxic effect of alpha interferon and zidovudine in HTLV-I associated adult T cell leukemia/lymphoma. Leukemia 14:716–721

    PubMed  CAS  Google Scholar 

  173. Datta A, Nicot C (2007) Telomere attrition induces a DNA double-strand break damage signal that reactivates p53 transcription in HTLV-I leukemic cells. Oncogene 27:1135–1141

    PubMed  Google Scholar 

  174. Datta A, Bellon M, Sinha-Datta U, Bazarbachi A, Lepelletier Y, Canioni D et al (2006) Persistent inhibition of telomerase reprograms adult T-cell leukemia to p53-dependent senescence. Blood 108:1021–1029

    PubMed  CAS  Google Scholar 

  175. Ikeda K, Oka M, Yamada Y, Soda H, Fukuda M, Kinoshita A et al (1999) Adult T-cell leukemia cells over-express the multidrug-resistance-protein (MRP) and lung-resistance-protein (LRP) genes. Int J Cancer 82:599–604

    PubMed  CAS  Google Scholar 

  176. Yasunami T, Wang YH, Tsuji K, Takanashi M, Yamada Y, Motoji T (2007) Multidrug resistance protein expression of adult T-cell leukemia/lymphoma. Leuk Res 31:465–470

    PubMed  CAS  Google Scholar 

  177. Lau A, Nightingale S, Taylor GP, Gant TW, Cann AJ (1998) Enhanced MDR1 gene expression in human T-cell leukemia virus-I-infected patients offers new prospects for therapy. Blood 91:2467–2474

    PubMed  CAS  Google Scholar 

  178. Hamamura RS, Ohyashiki JH, Kurashina R, Kobayashi C, Zhang Y, Takaku T et al (2007) Induction of heme oxygenase-1 by cobalt protoporphyrin enhances the antitumour effect of bortezomib in adult T-cell leukaemia cells. Br J Cancer 97:1099–1105

    PubMed  CAS  Google Scholar 

  179. Okudaira T, Tomita M, Uchihara JN, Matsuda T, Ishikawa C, Kawakami H et al (2006) NIK-333 inhibits growth of human T-cell leukemia virus type I-infected T-cell lines and adult T-cell leukemia cells in association with blockade of nuclear factor-kappaB signal pathway. Mol Cancer Ther 5:704–712

    PubMed  CAS  Google Scholar 

  180. Watanabe M, Ohsugi T, Shoda M, Ishida T, Aizawa S, Maruyama-Nagai M et al (2005) Dual targeting of transformed and untransformed HTLV-1-infected T cells by DHMEQ, a potent and selective inhibitor of NF-kappaB, as a strategy for chemoprevention and therapy of adult T-cell leukemia. Blood 106:2462–2471

    PubMed  CAS  Google Scholar 

  181. Ariga A, Namekawa J, Matsumoto N, Inoue J, Umezawa K (2002) Inhibition of tumor necrosis factor-alpha-induced nuclear translocation and activation of NF-kappa B by dehydroxymethylepoxyquinomicin. J Biol Chem 277:24625–24630

    PubMed  CAS  Google Scholar 

  182. Okudaira T, Hirashima M, Ishikawa C, Makishi S, Tomita M, Matsuda T et al (2007) A modified version of galectin-9 suppresses cell growth and induces apoptosis of human T-cell leukemia virus type I-infected T-cell lines. Int J Cancer 120:2251–2261

    PubMed  CAS  Google Scholar 

  183. Mori N, Matsuda T, Tadano M, Kinjo T, Yamada Y, Tsukasaki K et al (2004) Apoptosis induced by the histone deacetylase inhibitor FR901228 in human T-cell leukemia virus type 1-infected T-cell lines and primary adult T-cell leukemia cells. J Virol 78:4582–4590

    PubMed  CAS  Google Scholar 

  184. Zhang J, Nagasaki M, Tanaka Y, Morikawa S (2003) Capsaicin inhibits growth of adult T-cell leukemia cells. Leuk Res 27:275–283

    PubMed  CAS  Google Scholar 

  185. Harakeh S, Diab-Assaf M, Abu-El-Ardat K, Niedzwiecki A, Rath M (2006) Mechanistic aspects of apoptosis induction by l-lysine in both HTLV-1-positive and -negative cell lines. Chem Biol Interact 164:102–114

    PubMed  CAS  Google Scholar 

  186. Ishitsuka K, Ikeda R, Utsunomiya A, Uozumi K, Hanada S, Suzuki S et al (2002) Arsenic trioxide induces apoptosis in HTLV-I infected T-cell lines and fresh adult T-cell leukemia cells through CD95 or tumor necrosis factor alpha receptor independent caspase activation. Leuk Lymphoma 43:1107–1114

    PubMed  CAS  Google Scholar 

  187. Dasgupta A, Jung KJ, Jeong SJ, Brady JN (2008) Inhibition of methyltransferases results in induction of g2/m checkpoint and programmed cell death in human T-lymphotropic virus type 1-transformed cells. J Virol 82:49–59

    PubMed  CAS  Google Scholar 

  188. Harakeh S, Diab-Assaf M, Khalife JC, Abu-el-Ardat KA, Baydoun E, Niedzwiecki A et al (2007) Ascorbic acid induces apoptosis in adult T-cell leukemia. Anticancer Res 27:289–298

    PubMed  CAS  Google Scholar 

  189. Jeong SJ, Dasgupta A, Jung KJ, Um JH, Burke A, Park HU et al (2008) PI3K/AKT inhibition induces caspase-dependent apoptosis in HTLV-1-transformed cells. Virology 370:264–272

    PubMed  CAS  Google Scholar 

  190. Harakeh S, Abu-El-Ardat K, Diab-Assaf M, Niedzwiecki A, El-Sabban M, Rath M (2008) Epigallocatechin-3-gallate induces apoptosis and cell cycle arrest in HTLV-1-positive and -negative leukemia cells. Med Oncol 25:30–39

    PubMed  CAS  Google Scholar 

  191. Moarbess G, El-Hajj H, Kfoury Y, El-Sabban ME, Lepelletier Y, Hermine O et al (2008) EAPB0203, a member of the imidazoquinoxaline family, inhibits growth and induces caspase dependent apoptosis in T cell lymphomas and HTLV-I associated adult T-cell leukemia/lymphoma. Blood 111:3770–3777

    PubMed  CAS  Google Scholar 

  192. Haneji K, Matsuda T, Tomita M, Kawakami H, Ohshiro K, Uchihara JN et al (2005) Fucoidan extracted from Cladosiphon okamuranus Tokida induces apoptosis of human T-cell leukemia virus type 1-infected T-cell lines and primary adult T-cell leukemia cells. Nutr Cancer 52:189–201

    PubMed  CAS  Google Scholar 

  193. Hayashibara T, Yamada Y, Nakayama S, Harasawa H, Tsuruda K, Sugahara K et al (2002) Resveratrol induces downregulation in survivin expression and apoptosis in HTLV-1-infected cell lines: a prospective agent for adult T cell leukemia chemotherapy. Nutr Cancer 44:193–201

    Article  PubMed  Google Scholar 

  194. Harakeh S, Diab-Assef M, El-Sabban M, Haddadin M, Gali-Muhtasib H (2004) Inhibition of proliferation and induction of apoptosis by 2-benzoyl-3-phenyl-6,7-dichloroquinoxaline 1,4-dioxide in adult T-cell leukemia cells. Chem Biol Interact 148:101–113

    PubMed  CAS  Google Scholar 

  195. Achachi A, Florins A, Gillet N, Debacq C, Urbain P, Foutsop GM et al (2005) Valproate activates bovine leukemia virus gene expression, triggers apoptosis, and induces leukemia/lymphoma regression in vivo. Proc Natl Acad Sci USA 102:10309–10314

    PubMed  CAS  Google Scholar 

  196. Lezin A, Gillet N, Olindo S, Signate A, Grandvaux N, Verlaeten O et al (2007) Histone deacetylase mediated transcriptional activation reduces proviral loads in HTLV-1 associated myelopathy/tropical spastic paraparesis patients. Blood 110:3722–3728

    PubMed  CAS  Google Scholar 

  197. Nishioka C, Ikezoe T, Yang J, Komatsu N, Bandobashi K, Taniguchi A et al (2008) Histone deacetylase inhibitors induce growth arrest and apoptosis of HTLV-1-infected T-cells via blockade of signaling by nuclear factor kappaB. Leuk Res 32:287–296

    PubMed  CAS  Google Scholar 

  198. Hasegawa H, Yamada Y, Komiyama K, Hayashi M, Ishibashi M, Yoshida T et al (2006) Dihydroflavonol BB-1, an extract of natural plant Blumea balsamifera, abrogates TRAIL resistance in leukemia cells. Blood 107:679–688

    PubMed  CAS  Google Scholar 

  199. Sinha-Datta U, Taylor JM, Brown M, Nicot C (2008) Celecoxib disrupts the canonical apoptotic network in HTLV-I cells through activation of Bax and inhibition of PKB/Akt. Apoptosis 13:33–40

    PubMed  CAS  Google Scholar 

  200. Harakeh S, Diab-Assaf M, Niedzwiecki A, Khalife J, Abu-El-Ardat K, Rath M (2006) Apoptosis induction by Epican Forte in HTLV-1 positive and negative malignant T-cells. Leuk Res 30:869–881

    PubMed  CAS  Google Scholar 

  201. Waldmann TA, Longo DL, Leonard WJ, Depper JM, Thompson CB, Kronke M et al (1985) Interleukin 2 receptor (Tac antigen) expression in HTLV-I-associated adult T-cell leukemia. Cancer Res 45:4559s–4562s

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. V. Ciminale (Department of Oncology and Surgical Sciences, University of Padua, Italy); Dr. J. Semmes (Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA); Dr. J.M. Mesnard (Laboratoire Infections Rétrovirales et Signalisation Cellulaire, CNRS/UM I UMR 5121/IFR 122, Institut de Biologie, 34000 Montpellier, France) for kindly providing pictures for cellular localization of p13, Tax and HBZ, respectively. This work was supported by grants CA106258 and CA115398 from the National cancer Institute to C. Nicot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Nicot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, J.M., Nicot, C. HTLV-1 and apoptosis: role in cellular transformation and recent advances in therapeutic approaches. Apoptosis 13, 733–747 (2008). https://doi.org/10.1007/s10495-008-0208-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0208-7

Keywords

Navigation