Skip to main content
Log in

Bid is cleaved upstream of caspase-8 activation during TRAIL-mediated apoptosis in human osteosarcoma cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

TRAIL induces apoptosis in many malignant cell types. In this study, we used the human papilloma virus (HPV) 16 E6 protein as a molecular tool to probe the TRAIL pathway in HCT116 colon carcinoma cells and U2OS osteosarcoma cells. Intriguingly, we found that while E6 protected HCT116 cells from TRAIL, U2OS cells expressing E6 remained sensitive to TRAIL. Furthermore, silencing FADD and procaspase-8 expression with siRNA did not prevent TRAIL-induced apoptosis in U2OS cells. However, siBid provided significant protection from TRAIL, and the cleavage kinetics of Bid and caspase-8 revealed that Bid was cleaved prior to the activation of caspase-8. Cathepsin B activity in U2OS cells was significantly activated shortly after exposure to TRAIL, and the cathepsin B inhibitor, CA074Me, inhibited both TRAIL- and anti-DR5-mediated apoptosis and delayed the cleavage of Bid. These findings suggest that TRAIL activates a pathway dependent on Bid, but largely independent of FADD and caspase-8, in U2OS cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. MacFarlane M, Ahmad M, Srinivasula SM, Fernandes-Alnemri T, Cohen GM, Alnemri ES (1997) Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J Biol Chem 272:25417–25420

    Article  PubMed  CAS  Google Scholar 

  2. Pan G, O’Rourke K, Chinnaiyan AM et al (1997) The receptor for the cytotoxic ligand TRAIL. Science 276:111–113

    Article  PubMed  CAS  Google Scholar 

  3. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM (1997) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277:815–818

    Article  PubMed  CAS  Google Scholar 

  4. Sheridan JP, Marsters SA, Pitti RM et al (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277:818–821

    Article  PubMed  CAS  Google Scholar 

  5. Chaudhary PM, Eby M, Jasmin A, Bookwalter A, Murray J, Hood L (1997) Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity 7:821–830

    Article  PubMed  CAS  Google Scholar 

  6. Schneider P, Bodmer JL, Thome M, Hofmann K, Holler N, Tschopp J (1997) Characterization of two receptors for TRAIL. FEBS Lett 416:329–334

    Article  PubMed  CAS  Google Scholar 

  7. Yeh W-C, de la Pompa JL, McCurrach ME, Shu H-B, Elia AJ, Shahinian A, Ng M, Wakeham A, Khoo W, Mitchell K, El-Deiry WS, Lowe SW, Goeddel DV, Mak TW (1998) FADD: Essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279:1954–1958

    Article  PubMed  CAS  Google Scholar 

  8. Sprick MR, Weigand MA, Rieser E, Rauch CT, Juo P, Blenis J, Krammer PH, Walczak H (2000) FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12:599–609

    Article  PubMed  CAS  Google Scholar 

  9. Kischkel FC, Lawrence DA, Chuntharapai A, Schow P, Kim KJ, Ashkenazi A (2000) Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12:611–620

    Article  PubMed  CAS  Google Scholar 

  10. Thomas LR, Henson A, Reed JC, Salsbury FR, Thorburn A (2004) Direct binding of Fas-associated death domain (FADD) to the tumor necrosis factor-related apoptosis-inducing ligand receptor DR5 is regulated by the death effector domain of FADD. J Biol Chem 279:32780–32785

    Article  PubMed  CAS  Google Scholar 

  11. Almasan A, Ashkenazi A (2003) Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev 14:337–348

    Article  PubMed  CAS  Google Scholar 

  12. Barnhart BC, Alappat EC, Peter ME (2003) The CD95 type I/type II model. Semin Immunol 15:185–193

    Article  PubMed  CAS  Google Scholar 

  13. Green DR (2003) The suicide in the thymus, a twisted trail. Nat Immunol 4:207–208

    Article  PubMed  CAS  Google Scholar 

  14. Herr I, Wilhelm D, Meyer E, Jeremias I, Angel P, Debatin KM (1999) JNK/SAPK activity contributes to TRAIL-induced apoptosis. Cell Death Differ 6:130–135

    Article  PubMed  CAS  Google Scholar 

  15. Vivo C, Liu W, Broaddus VC (2003) c-Jun N-terminal kinase contributes to apoptotic synergy induced by tumor necrosis factor-related apoptosis-inducing ligand plus DNA damage in chemoresistant, p53 inactive mesothelioma cells. J Biol Chem 278:25461–25467

    Article  PubMed  CAS  Google Scholar 

  16. Voelkel-Johnson C, Hannun YA, El-Zawahry A (2005) Resistance to TRAIL is associated with defects in ceramide signaling that can be overcome by exogenous C6-ceramide without requiring down-regulation of cellular FLICE inhibitory protein. Mol Cancer Ther 4:1320–1327

    Article  PubMed  CAS  Google Scholar 

  17. Petak I, Vernes R, Szucs KS et al (2003) A caspase-8-independent component in TRAIL/Apo-2L-induced cell death in human rhabdomyosarcoma cells. Cell Death Differ 10:729– 739

    Article  PubMed  CAS  Google Scholar 

  18. Liu J, Guo Q, Chen B, Yu Y, Lu H, Li YY (2006) Cathepsin B and its interacting proteins, bikunin and TSRC1, correlate with TNF-induced apoptosis of ovarian cancer cells OV-90. FEBS Lett 580:245–250

    PubMed  Google Scholar 

  19. Heinrich M, Neumeyer J, Jakob M et al (2004) Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ 11:550–563

    Article  PubMed  CAS  Google Scholar 

  20. Nagaraj NS, Vigneswaran N, Zacharias W (2006) Cathepsin B mediates TRAIL-induced apoptosis in oral cancer cells. J Cancer Res Clin Oncol 132:171–183

    Article  PubMed  CAS  Google Scholar 

  21. Garnett TO, Filippova M, Duerksen-Hughes PJ (2006) Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis. Cell Death Differ 13:1915–1926

    Article  PubMed  CAS  Google Scholar 

  22. Filippova M, Parkhurst L, Duerksen-Hughes PJ (2004) The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J Biol Chem 279:25729–25744

    Article  PubMed  CAS  Google Scholar 

  23. Carrasco RA, Stamm NB, Patel BK (2003) One-step cellular caspase-3/7 assay. Biotechniques 34:1064–1067

    PubMed  CAS  Google Scholar 

  24. Filippova M, Song H, Connolly JL, Dermody TS, Duerksen-Hughes PJ (2002) The human papillomavirus 16 E6 protein binds to tumor necrosis factor (TNF) R1 and protects cells from TNF-induced apoptosis. J Biol Chem 277:21730– 21739

    Article  PubMed  CAS  Google Scholar 

  25. Tang DG, Porter AT (1996) Apoptosis: A current molecular analysis. Pathol Oncol Res 2:117–131

    Article  CAS  PubMed  Google Scholar 

  26. Filippova M, Brown-Bryan TA, Casiano CA, Duerksen-Hughes PJ (2005) The human papillomavirus 16 E6 protein can either protect or further sensitize cells to TNF: effect of dose. Cell Death Differ 12:1622–1635

    Article  CAS  PubMed  Google Scholar 

  27. Nagata S, Golstein P (1995) The fas death factor. Science 267:1449

    Article  PubMed  CAS  Google Scholar 

  28. Yonehara S, Ishii A, Yonehara M (1989) A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor. J Exp Med 169:1747– 1756

    Article  PubMed  CAS  Google Scholar 

  29. Deng Y, Ren X, Yang L, Lin Y, Wu X (2003) A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell 115:61–70

    Article  PubMed  CAS  Google Scholar 

  30. Ghafourifar P, Klein SD, Schucht O et al (1999) Ceramide induces cytochrome c release from isolated mitochondria. Importance of mitochondrial redox state. J Biol Chem 274:6080–6084

    Article  PubMed  CAS  Google Scholar 

  31. Bennett BL, Sasaki DT, Murray BW et al (2001) SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA 98:13681–13686

    Article  PubMed  CAS  Google Scholar 

  32. Yang J, Yu Y, Sun S, Duerksen-Hughes PJ (2004) Ceramide and other sphingolipids in cellular responses. Cell Biochem Biophys 40:323–350

    Article  PubMed  CAS  Google Scholar 

  33. Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23:2881–2890

    Article  PubMed  CAS  Google Scholar 

  34. Cirman T, Oresic K, Mazovec GD et al (2004) Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 279:3578–3587

    Article  PubMed  CAS  Google Scholar 

  35. Kuang AA, Diehl GE, Zhang J, Winoto A (2000) FADD is required for DR4- and DR5-mediated apoptosis: lack of trail-induced apoptosis in FADD-deficient mouse embryonic fibroblasts. J Biol Chem 275:25065–25068

    Article  PubMed  CAS  Google Scholar 

  36. Hersey P, Zhang XD (2001) How melanoma cells evade trail-induced apoptosis. Nat Rev Cancer 1:142–150

    Article  PubMed  CAS  Google Scholar 

  37. Zhang XD, Zhang XY, Gray CP, Nguyen T, Hersey P (2001) Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of human melanoma is regulated by smac/DIABLO release from mitochondria. Cancer Res 61:7339–7348

    PubMed  CAS  Google Scholar 

  38. Zhang L, Fang B (2005) Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 12:228–237

    Article  PubMed  CAS  Google Scholar 

  39. Maundrell K, Antonsson B, Magnenat E et al (1997) Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1. J Biol Chem 272:25238–25242

    Article  PubMed  CAS  Google Scholar 

  40. Kharbanda S, Saxena S, Yoshida K et al (2000) Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J Biol Chem 275:322–327

    Article  PubMed  CAS  Google Scholar 

  41. Rincon M, Whitmarsh A, Yang DD et al (1998) The JNK pathway regulates the In vivo deletion of immature CD4(+)CD8(+) thymocytes. J Exp Med 188:1817–1830

    Article  PubMed  CAS  Google Scholar 

  42. Sabapathy K, Hu Y, Kallunki T et al (1999) JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr Biol 9:116–125

    Article  PubMed  CAS  Google Scholar 

  43. Walsh CM, Wen BG, Chinnaiyan AM (1998) O’Rourke K, Dixit VM, Hedrick SM. A role for FADD in T cell activation and development. Immunity 8:439–449

    Article  PubMed  CAS  Google Scholar 

  44. Smith KG, Strasser A, Vaux DL (1996) CrmA expression in T lymphocytes of transgenic mice inhibits CD95 (Fas/APO-1)-transduced apoptosis, but does not cause lymphadenopathy or autoimmune disease. Embo J 15:5167–5176

    PubMed  CAS  Google Scholar 

  45. Martin S, Phillips DC, Szekely-Szucs K, Elghazi L, Desmots F, Houghton JA (2005) Cyclooxygenase-2 inhibition sensitizes human colon carcinoma cells to TRAIL-induced apoptosis through clustering of DR5 and concentrating death-inducing signaling complex components into ceramide-enriched caveolae. Cancer Res 65:11447–11458

    Article  PubMed  CAS  Google Scholar 

  46. Koblinski JE, Ahram M, Sloane BF (2000) Unraveling the role of proteases in cancer. Clin Chim Acta; Int J Clin Chem 291:113–135

    Article  CAS  Google Scholar 

  47. Bogyo M, Verhelst S, Bellingard-Dubouchaud V, Toba S, Greenbaum D (2000) Selective targeting of lysosomal cysteine proteases with radiolabeled electrophilic substrate analogs. Chem Biol 7:27–38

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grant 1 R01 CA-095461 (PDH), the Ruth L. Kirschstein National Service Award Individual Fellowship 1 F31 CA113650-01A1 (TG), and by NIH award 2R25 GM060507-05. In addition, we thank Dr. Carl Ware (La Jolla Institute for Allergy and Immunology) for the pcDNA-FADD-encoding plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penelope Jayne Duerksen-Hughes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garnett, T.O., Filippova, M. & Duerksen-Hughes, P.J. Bid is cleaved upstream of caspase-8 activation during TRAIL-mediated apoptosis in human osteosarcoma cells. Apoptosis 12, 1299–1315 (2007). https://doi.org/10.1007/s10495-007-0058-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0058-8

Keywords

Navigation