Skip to main content
Log in

Apoptosis: A current molecular analysis

  • Review
  • Published:
Pathology & Oncology Research

Abstract

Apoptosis is a cell suicide program characterized by distinct morphological (cell shrinkage, membrane blebbirig, pyknosis, chromatin margination. denser cytoplasmic images) and biochemical (e.g, DNA fragmentation into distruct address, degradation. of apoptotion markers such as PAR*’ and nuclear (anuns) features. It is involved in multipte physiological processes cxaniplinched by involution; of mammary issues., emboyonic; development, nomocostic maintaince of tissue and organs. and maîuration of the immune aslem as in many pathological condition. represented by nurologic dengradation (Alzerimer’s dieses autoimmune and Inflammatory dieses etology atherosclerosic AIDS, and oncogenesis and underprogression Numberpous moleculrer entities herc been shown to reboloate the apoptotic process. This review provides a conside summery of the recent data on the role of oncogenes/tumor suppressor genes. cytation and factors/growth factors receptors. intracellular signal transducers, cell cycler egulation. Reactive oxygen species on other free radicts extracelluler matrix regulator cell adhession moleculer and specefic endonucleases and cytoplasmic problem (the ICL processed in regulating cell survival and apoptose. of the molecular mechanism regulating apoptosis bears tremendous impact on enhancing of understanding of many dieses infacting the human being an antibody brings us hope for the cure of the diseases of.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hockenberx D: Defining apoptosis. Am J Pathol 146:16–19. 1995.

    Google Scholar 

  2. Kroemer G, Petit P, Zamzami N, et al: The biochemistry of programmed cell death. FASEB J 9:1277–1287, 1995.

    PubMed  CAS  Google Scholar 

  3. Takaxania S, Sato T Krajewski S, et al. Cloning and functional analysis of BAG-1: A novel bcl-2-binding protein with anti-cell death activity. Cell 80:279–284, 1995.

    Google Scholar 

  4. Yang E, Zha J, Jockel J, Boise LH, et al: Bad: a heterodimerie partner for Bcl-X, and Bcl-2, displaces bax and promotes cell death. Cell 80:285–291, 1995.

    PubMed  CAS  Google Scholar 

  5. Elledge RM and Lee W-H: Life and death by p53. BioEssays 17:923–930, 1995.

    PubMed  CAS  Google Scholar 

  6. Farrow SN, White .IHM, Martinou I, et al. Cloning of a bcl-2 homologue by intercation with adenovirus E1B 19K. Nature 374:731–733, 1995.

    PubMed  CAS  Google Scholar 

  7. Chittenden T, Harrington EA, O’Connor R, et al. Induction of apoptosis by the Bcl-2 homologue Bak. Nature 374:733–736. 1995.

    PubMed  CAS  Google Scholar 

  8. Gillet G, Guerin M, Trembleau A, et al: A BCL-2-related gene is activated in avian cells transformed by the Rous sarcoma virus. EMBOJ 14:1372–1381. 1995.

    CAS  Google Scholar 

  9. McGahon AJ, Nishioka WK, Martin S.J, et al. Regulation of the Fas apoptotic cell death pathway by Abl. J Biol Chem 270:22625–22631,1995.

    PubMed  CAS  Google Scholar 

  10. Englerl C, Hou X, Maheswaren S, et al. WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. EMBO J 14:4662–4675. 1995.

    Google Scholar 

  11. Lotem J andSachs L: A mutant p53 antagonizes the deregulated c-myc-mediated enhancement of apoptosis and decrease in leukomogenicity. Proc Natl Acad Sci USA 92:9672–9676. 1995.

    PubMed  CAS  Google Scholar 

  12. Katayose D, Wersto R, Cowan KH, et al. Effects of a recombinant adenovirus expressing WAFl/Cip 1 on cell growth, cell cycle, and apoptosis. Cell Growth Differ 6:1207–1212, 1995.

    PubMed  CAS  Google Scholar 

  13. Bones J-C, Willerford DM, Grevin D, et al. Increased T-cell apoptosis and terminal B-cell differentiation induced by inactivation of the Ets-1 protooncogene. Nature 377:635–638. 1995.

    Google Scholar 

  14. Muthusamy N, Barton K and Leiden .JM: Defective activation and survival of T cells lacking the Ets-1 transcription factor. Nature 377:639–642. 1995.

    PubMed  CAS  Google Scholar 

  15. Takahashi C, Harada Y, Ariga H, et al. Involvement of PIM-1 in DNA fragmentation in mouse NS-1-derived cells. Biochem Biophys Res Commun 215:538–546. 1995.

    PubMed  CAS  Google Scholar 

  16. Hallahan DE Dunphx E, Viruduchalam S, et al. c-jun and Egr-1 participate in DNA synthesis and cell survival in response to ionizing radiation exposure. J Biol Chem 270:30303–30309. 1995.

    PubMed  CAS  Google Scholar 

  17. Rubin R andBaserga R: Insulin-like growth factor-I receptor. Its role in cell proliferation, apoptosis. and tumorigenicity. Lab Invest 73:311–331. 1995.

    PubMed  CAS  Google Scholar 

  18. Kim H-RC, Upadhyay S, Li GY, et al. Platelet-derived growth factor induces apoptosis in growth-arrested m urine fibroblasts. Proc Natl Acad Sei USA 92:9500–9504. 1995.

    CAS  Google Scholar 

  19. Havrilesky LJ, Hurteau JA, Whilaker RS, et al. Regulation of apoptosis in normal and malignant epithelial cells by transforming growth factor ß. Cancer Res 55:944–948. 1995.

    PubMed  CAS  Google Scholar 

  20. Turley JM, Funakoshi S, Ruscctti FW, et al: Growth inhibition and apoptosis of RL human B lymphoma cells by vitamin E succinate and retinoic acid: Role for transforming growth factor ß. Cell Growth Differ 6:655–663. 1995.

    PubMed  CAS  Google Scholar 

  21. Merlo GR, Basolo E, Fiore E, et al. p53-dependent and p53-independent activation of apoptosis in mammary epithelial cells reveals a survival function of EGF and insulin. J Ceil Biol 128:1 185–1 196. 1995.

    CAS  Google Scholar 

  22. Wu X, Fan Z, Masui H, Rosen N, et al. Apoptosis induced by an anti-epidermal growth factor receptor monoclonal antibody in a human colorectal carcinoma cell line and its delay by insulin. J Clin Invest 95:1897–1905. 1995.

    PubMed  CAS  Google Scholar 

  23. Wang TTY and Phang JM: Effects of estrogen on apoptotic pathways in human breast cancer cell line MCF-7. Cancer Res 55:2487–2489, 1995.

    PubMed  CAS  Google Scholar 

  24. Elstner E, Linker-Israeli M, et al. 20-epi-Vitamin D3 analogues: A novel class of potent inhibitors of proliferation and inducers of differentiation of human breast cancer cell lines. Cancer Res 55:2822–2830. 1995.

    PubMed  CAS  Google Scholar 

  25. Henderson JE, Ainizuka N, Warshawsky H, et al. Nucleolar localization of parathyroid hormone-related peptide enhances survival of chondocytes under conditions that promote apoptotic cell death. Mol Cell Biol 15:4064–4075, 1995.

    PubMed  CAS  Google Scholar 

  26. Woronicz JD, Lina A, Calnan BJ, et al: Regulation of the Nur77 orphan steroid receptor in activation-induced apoptosis. Mol Cell Biol 15:6364–6376. 1995.

    PubMed  CAS  Google Scholar 

  27. Zheng L, Fisher G, Miller RE, et al: Induction of apoptosis in mature T cells by tumor necrosis factor. Nature 377:348–351, 1995.

    PubMed  CAS  Google Scholar 

  28. Frump, BE and Berezesky, IK: Calcium-mediated cell injury and cell death. FASEB J 9:219–228, 1995.

    Google Scholar 

  29. Gierstsen BE and Doskeland SO: Protein phosphorylation in apoptosis. Biochim Biophys Acta 1269:187–199, 1995.

    Google Scholar 

  30. Xia Z, Dickens M, Raingeaud J, et al: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331. 1995.

    PubMed  CAS  Google Scholar 

  31. Behrens MM, Martinez, JL, Moratilla C, et al. Apoptosis induced by protein kinase C inhibition in a neuroblastoma cell line. Cell Growth Differ 6:1375–1 380, 1995.

    PubMed  CAS  Google Scholar 

  32. De Vent JE, Kukoly CA, Bryant WO, et al: Phorbol esters induce death in MCF-7 breast cancer cells with altered expression of protein kinase C isoforms. Role for p53-independent induction of gadd45 in initiating death. J Clin Invest 96:1874- 1886,1995.

    Google Scholar 

  33. Fongracz J, Tuff ley W, Johnson GD, et al. Changes in protein kinase C isozyme expression associated with apoptosis in U937 myelomonocytic cells. Exp Cell Res 218:430–438, 1995.

    Google Scholar 

  34. Aharoni D, Dilutes A, Own M, et al. cAMP-mediated signals as determinants for apoptosis in primary granulosa cells. Exp Cell Res 218:271–282, 1995.

    PubMed  CAS  Google Scholar 

  35. Chen G, Shi L, Lilchfield DW, et al. Rescue from granzyme B-induced apoptosis by Weel kinase. J Exp Med 181:2295–2300. 1995.

    PubMed  CAS  Google Scholar 

  36. Yao R and Cooper GM: Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267:2003–2006. 1995.

    PubMed  CAS  Google Scholar 

  37. Henkemeyer M, Rossi DJ, Holmyard DP, et al. Vascular system defects and neuronal apoptosis in mice lacking Ras GTPase-activating protein. Nature 377:695–701, 1995.

    PubMed  CAS  Google Scholar 

  38. Wang H-G, Millan JA, Cox AD, et al. R-ras promotes apoptosis caused by growth factor deprivation via a bcl-2 suppressible mechanism. J Cell Biol 129:1103–1114. 1995.

    PubMed  CAS  Google Scholar 

  39. Takala M, Homnia Y and Kurosaki T: Requirement oi phos-pholipase C-g2 activation in surface immunoglobulin M-induced B cell apoptosis. J Exp Med 182:907–914. 1995.

    Google Scholar 

  40. Kolesnick R and Fuks Z: Ceramide: A signal for apoptosis or mitogenesis?. J Exp Med 181:1949–1952. 1995.

    PubMed  CAS  Google Scholar 

  41. Tang DG, Chen Y and Honn KV: Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proc Natl Acad Sei USA. 1996. in press.

  42. Logan TJ, Evans DL, Mercer WE, et al. Fixpression of a deletion mutant of the E2F1 transcription factor in fibroblasts lengthens S phase and increases sensitivity to S phase-specific toxins. Cancer Res 55:2883–2891. 1995.

    PubMed  CAS  Google Scholar 

  43. Ongkeko W, Ferguson DJP, Harris AL, et al: Inactivation of Cdc2 increases the level of apoptosis induced by DNA damage. J Cell Sei 108:2897–2904. 1995.

    CAS  Google Scholar 

  44. Gao CY and Zelenka PS: Induction of cyclin B and H1 kinase activity in apoptotic PC 12 cells. Exp Cell Res 219:612–618. 1996.

    Google Scholar 

  45. Wang Q, Worland PJ, Clark JL, et al: Apoptosis in 7-hydroxy-staurosporin-treated T lymphoblasts correlates with activation of cyclin-dependent kinases 1 and 2. Cell Growth Differ 6:927–936, 1995.

    PubMed  CAS  Google Scholar 

  46. Evan Gl, Brawn L, Whyte M, et al: Apoptosis and the cell cycle. Cuur Opinion Cell Biol 7:825–834, 1995.

    CAS  Google Scholar 

  47. Busciglio J and Yankner BA: Apoptosis and increased generation of reaction oxygen species in Down’s syndrome neurons in vitro. Nature 378:776–779, 1995.

    PubMed  CAS  Google Scholar 

  48. Korsmeyer, S.J, Yin, XM, Oltvai, ZN, et al: Reactive oxygen species and the regulation of cell death by the bcl-2 gene family. Biochim Biophys Acta 1271:63–66, 1995.

    PubMed  Google Scholar 

  49. Fernandez A, Kiefer J, Fosdiek L, et al: Oxygen radical production and thiol depletion are required for Ca2+-mediated endonuciease activation in apoptotic thymocytes. J Immunol 155:5133–5139, 1995.

    PubMed  CAS  Google Scholar 

  50. Graeber FG, Osmanian C, Jaeks F, et al: Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 379:88–91, 1995.

    Google Scholar 

  51. Howlett AR, Bailey N, Danisky C, et al: Cellular growth and survival are mediated by bl integrins in normal human breast epithelium but not in breast carcinoma. J Cell Sei 108:1945–1957, 1995.

    CAS  Google Scholar 

  52. Zhang Z, Vuori K, Reed JC, et al: The a5bl integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc Natl Acad Sci USA 92:6161–6165. 1995.

    PubMed  CAS  Google Scholar 

  53. Clarke AS, Lotz MM, Chao C,et al: Activation of the p21 pathway of growth arrest and apoptosis by the ß4 integrin cyto-plasmic domain. J Biol Chem 270:22673–22676. 1995.

    PubMed  CAS  Google Scholar 

  54. Saehnan EUM, Keelx PJ and Santoro SA: Loss of MDCK cell a2bl integrin expression results in reduced cyst formation, failure of hepatocyte growth factor/scatter factor-induced branching morphogenesis, and increased apoptosis. J Cell Sei 108:3531–3540, 1995.

    Google Scholar 

  55. Rak J, Milsuhashi Y, Erdos V, et al: Massive programmed cell death in intestinal epithelial cells induced by three-dimensional growth conditions: Suppression by mutant c-H-ras oneogene expression. J Cell Biol 131:1587–1598, 1995.

    PubMed  CAS  Google Scholar 

  56. Alnemeri ES, Fernandes-Alnemri T and Litwack G: Cloning and expression of four novel isoforms of human interleukin-lb converting enzyme with different apoptotic activities. J Biol Chem 270:4312–4317, 1995.

    Google Scholar 

  57. Kamens J, Paskind M, Hugunin M, el al: Identification and characterization of ICH-2. a novel member of the interlcukin 1b-converting enzyme family of cysteine proteases. J Biol Chem 270:15250–15256, 1995.

    PubMed  CAS  Google Scholar 

  58. Tewari M, Qitan LT, O’Rourke K, et al: Yama/CPP32b, a mammalian homolog of CED-3. is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81:801–809, 1995.

    PubMed  CAS  Google Scholar 

  59. Nicholson DW, Ali A, Thornberry NA, et al: Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43, 1995.

    PubMed  CAS  Google Scholar 

  60. Fauchen C, Diu A, Chan AWE, et al: A novel human protease similar to the interlcukin-1ß converting enzyme induces apoptosis in transfectcd cells. EMBOJ 14:1914–1922. 1995.

    Google Scholar 

  61. Fernandez-Alnemri T, Fakahashi A, Armstrong R, el al: Mch3. a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res 55:6045–6052. 1995.

    Google Scholar 

  62. Duam H, Chinnaixan AM, Hudson PL, et al: ICE-LAP3. a novel mammalian homologue of the Caenorhabditis elegans cell death protein Ced-3 is activated during Fas- and tumor necrosis factor-induced apoptosis. J Biol Chem 271:1621–1625. 1996.

    Google Scholar 

  63. Aagaard-Fillery KM and Jelinek DF: Differential activation of a calcium-dependent endonuciease in human B lymphocytes. Role in ionomycin-induced apoptosis. J Immunol 155:3297–3307. 1995.

    Google Scholar 

  64. Marthinuss J, Andrade-Gorlon P and Seiberg M: A secreted serine protease induce apoptosis in Pam212 keratinocytes. Cell Growth & Differ 6:807–816, 1995.

    CAS  Google Scholar 

  65. Zlm W-H and Loh T-T: Effects of Na+/H+ antiport and intracellular pH in the regulation of HL-60 cell apoptosis. Biochim Biophys Acta 1269:122–128. 1995.

    Google Scholar 

  66. Gottlieb RA, Nordberg J, Skowronski E, el al: Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proc Natl Acad Sei USA 93:654–658, 1996.

    CAS  Google Scholar 

  67. Martin SJ, Newmexer DD, Mathias S, et al: Cell-free reconstitution of Fas-, UV irradiation- and ceramide-induced apoptosis. EMBOJ 14:5191–5200, 1995.

    CAS  Google Scholar 

  68. Zhang H, Saeed B and Ng S-C: Combinatorial interactions of human Bcl-2 related proteins: Mapping of regions important for bcl-2/bcl-Xs interaction. Biochem Biopys Res Commun 208:950–956, 1995.

    CAS  Google Scholar 

  69. Sedlak FW, Oltavi ZN, Yang E.et al: Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc Natl Acad Sei USA 92:7834–7838, 1995.

    CAS  Google Scholar 

  70. Chitlenden T, Elemington C, Houghton AB, et al: A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J 14:5589–5596, 1995.

    Google Scholar 

  71. Lomo J, Sineland EB, Krajewski S, et al: Expression of the Bcl-2 homologue Mel-1 correlates with survival of peripheral blood B lymphocytes. Cancer Res 56:40–43, 1996.

    PubMed  CAS  Google Scholar 

  72. Schlaifer D, March M, Krajewski S, el al: High expression of the bcl-X1 in Reed-Sternberg cells of Hodgkin’s disease. Blood 85:2671–2674. 1995.

    PubMed  CAS  Google Scholar 

  73. Dole MG, Jastx R, Cooper MJ, et al: Bcl-X1 is expressed in neuroblastoma cells and modulates chemotherapy-induced apoptosis. Cancer Res 55:2576–2582, 1995.

    PubMed  CAS  Google Scholar 

  74. Marin MC, Hsu B, Stephens LC, et al: The functional basis of c-myc and bcl-2 complementation during multistep lympho-magenesis in vivo. Exp Cell Res 217:240–247, 1995.

    PubMed  CAS  Google Scholar 

  75. Alderson LM, Castleberg RL, Harsh GR, et al: Human gliomas with wild tvpe p53 express bel 2. Cancer Res 55;999–1001. 1995.

    PubMed  CAS  Google Scholar 

  76. Bronner MP, Culin C, Reed JC, et al: The bcl-2 proto-oncogene and the gastrointestinal epithelial tumor progression model. Am J Pathol 146:20–26, 1995.

    PubMed  CAS  Google Scholar 

  77. Krajewski S, Blomqvist C, Franssila K, et al: Redticed expression of proapoptotic gene bax is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res 55:4471–4478.1995.

    PubMed  CAS  Google Scholar 

  78. Tron VA, Krajewski S, Klein-Parker H, et al. Immunohisto-chemical analysis of bcl-2 protein regulation in cutaneous melanoma. Am. J Pathol 146:643–650, 1995.

    PubMed  CAS  Google Scholar 

  79. Liu AY. Corey F, Blulou F et al: Prostatic cell lineage markers: Emergence of Bcl2+ cells of human prostate cancer xenograft LuCaP 23 following castration. Int. J Cancer 65:85–89. 1996.

    PubMed  CAS  Google Scholar 

  80. Jacobson MD and Raff MC: Programmed cell death and Bcl-2 protection in very low oxygen. Nature 347:814–816. 1995.

    Google Scholar 

  81. Steinman HM: The Bcl-2 oncoprotein functions as a pro-oxi-dant. J Biol Cheni 270:3487–3490. 1995.

    CAS  Google Scholar 

  82. Haldar S. Jena N and Croce CM: Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sei 92:4507–451 1. 1995.

    CAS  Google Scholar 

  83. Hewitt SM, Hamada S, McDonnell T J, et al. Regulation of the proto-oncogenc bcl-2 and c-myc by the Wiims" tumor suppressor gene WT1. Cancer Res 55:5386–5389. 1995.

    PubMed  CAS  Google Scholar 

  84. Bardeesx N. Beckwith JB and Pelletier J: Clonal expansion and attenuated apoptosis in Wilms’ tumors arc associated with p53 gene mutations. Cancer Res 55:215–219. 1995.

    PubMed  Google Scholar 

  85. Sinicrope FA, Rnan SB, Claery KR, et al. bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis. Cancer Res 55:237–241. 1995.

    PubMed  CAS  Google Scholar 

  86. Benveniste P and Cohen A: p53 expression is required tor thymocyte apoptosis induced by adenosinc deaminase deficiency. Proc Nati Acad Sei USA 92:8373–8377. 1995.

    CAS  Google Scholar 

  87. Zhuang S-M, Shavarts A, van Orntondt H, t al. Apoptin. a protein derived from chicken anemia virus, induces p53-inde-pendent apoptosis in human osteosarcoma cells Cancer Res 55:486–489, 1995.

    PubMed  CAS  Google Scholar 

  88. Li B, Kittrell FS, Medina D, et al. Delay of dimethylbenz.[a]an-thracene-induced mammary tumorigenesis in transgenic mice by apoptosis induced by an unusual mutant p53 protein. Mol Carcinogenesis 14:75–83. 1995.

    Google Scholar 

  89. Morris GF, Bischoff JR and Mathews MB: Transcriptionai activation of the human proliferating cell nuclear antigen promoter by p53. Proc Nati Acad Sei USA93:895–899. 1996.

    CAS  Google Scholar 

  90. Kohthutber F, Hermeking H, Graessmann A.et al: Induction of apoptosis by the e-Myc helix-loop-helix/leucine zipper domain in mouse 3T3-L1 fibroblasts. J Biol Chem 270:28797–28805. 1995.

    Google Scholar 

  91. Cortez D, Kadlec L and Pendergast AM: Structural and signaling requirements for Bcr-Abl-mediated transformation and inhibition of apoptosis. Mol Cell Bioi 15:5531–5541. 1995.

    CAS  Google Scholar 

  92. Garlenans RB, Wany P and Hoffmann P: Induction of the WAFI/CIP1 protein and apoptosis in human T-cell leukemia virus type I-transformed lymphocytes alter treatment with Adnamvcin by using a p53-independent pathway. Proc Natl Acad Sei USA 93:265–268. 1996.

    Google Scholar 

  93. Muthukknmar S, Nair F Sells SF, et al. Role of EGR-1 In thapsigargm-inducible apoptosis in the melanoma cell line A375-C6. Mol Cell Biol 15:6262–6272. 1995.

    Google Scholar 

  94. Bullock G, Ray S. Reed J, et al. Evidence against a direct role for the induction of c-jun expression in the mediation ol drug-induced apoptosis in human acute leukemia cells. Clinical Cancer Res 1:559–564, 1995.

    CAS  Google Scholar 

  95. Gajate C, Alonso MT, Schimmang T, et al. C-Fos is not essential for apoptosis. Biochem Biochim Res Commun 218:267–272, 1996.

    CAS  Google Scholar 

  96. Grass H-J and Dower SK: Tumor necrosis factor ligand superfamily: Involvement in the pathology of malignant lymphomas. Blood 85:3378–3304, 1995.

    Google Scholar 

  97. Hsu H, Xiony J and Goeddel DV: The TNF receptor-1 associated protein TRADD signals cell death and NF-kB activation. Cell 81:495–504. 1995.

    PubMed  CAS  Google Scholar 

  98. Chinnaiyan AM, O’Ronrke K, Tewari M, et al. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiate apoptosis. Cell 81:505–512. 1995.

    PubMed  CAS  Google Scholar 

  99. Stranger BZ, Leder P Lee F-H, et al RIP: A novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81:513–523. 1995.

    Google Scholar 

  100. Feinstein F, Kimichi A, Wallach D, et al. The Death domain: a module shared by proteins with diverse cellular functions. TIBS 20:342–344. 1995.

    PubMed  CAS  Google Scholar 

  101. Hsu H, Shu H-B, Pan M-G and Goeddel DV: TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84:299–308. 1996.

    PubMed  CAS  Google Scholar 

  102. Chu K, Niu X and Williams LT: A Fas-associated protein factor. FAF1, potentiates Fas-mediated apoptosis. Proc Natl Acad Sei USA 92:11894–11898. 1995.

    CAS  Google Scholar 

  103. Sato T, Irie S, Kitada S and Reed JC: FAP-1: A protein tyrosine phosphatase that associates with Fas. Science 268:411–415, 1995.

    PubMed  CAS  Google Scholar 

  104. Kischkel FC, Hellbardt S, Behrmann I. et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. FMBO J 14:5579–5588. 1995.

    CAS  Google Scholar 

  105. Voelkel-Johnson C, Thorne TE and Laster SM: Susceptibility to TNF in the presence of inhibitors of transcription or translation is dependent on the activity of cytosolic phospholipase A2 in human melanoma tumor cells. J Immunol 156:201–207. 1996.

    PubMed  CAS  Google Scholar 

  106. Goosens V Grootcn J, De Vos K, et al. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sei USA 92:8115–81 19. 1995.

    Google Scholar 

  107. Tewari M and Dixit VM: Fas- and TNF-induced apoptosis is inhibited by the poxvirus ermA gene product. J Biol Chem 270:3255–3260. 1995.

    PubMed  CAS  Google Scholar 

  108. Markowitz, S, Wang J. Myeroff L, et al Inactivation of the type II TGF-ß receptor in colon cancer with mierosatellitc instability. Science 268: i 336–1338. 1995.

    Google Scholar 

  109. Jacobson FW Stokke TandJacobson SFW: Transforming growth factor-b potently inhibits the viability-promoting activity of stem cell factor and other cylokines and induces apoptosis of primitive murine hematopoietic progenitor cells. Blood 86:2957–2966. 1995.

    PubMed  Google Scholar 

  110. Choi ME and Ballennann BJ: Inhibition of capillary morphogenesis and associated apoptosis by dominant negative mutant transforming growth factor-b receptors. J Biol Chem 270:21144–21150. 1995.

    PubMed  CAS  Google Scholar 

  111. Zhang X, Glangrecco L, Broome HE, et al. Control of CD4 effector fate: Transforming growth factor bl and interleikin 2 syneigize to pievem apopiosis and promote eiieclor expansion. J Exp Med 182:699–709. 1995.

    PubMed  CAS  Google Scholar 

  112. Sell C, Baserya R and Rubin R: Insulin-like growth factor I (1GF-I) and the IGF-I receptor prevent etoposide-induced apoptosis. Cancer Res 55:303–306. 1995.

    PubMed  CAS  Google Scholar 

  113. Maynelli L, Ciuelli M and Chiaruyi V: Phorbol esters attenuate the expression of p53 in cells treated with doxorubiein and protects TS-P53/K562 from apoptosis. Biochem Biophys Res. Commun 215:641–645. 1995.

    Google Scholar 

  114. de Vente J, Kiley S, Garris T, Bryant W, et al. Phorbol ester treatment of U937 cells with altered protein kinase C content and distribution induces cell death rather than differentiation. Cell Growth Differ 6:371–382, 1995.

    PubMed  Google Scholar 

  115. Lin Y-S, Kao S-F, Jan M-S, et al. Changes of protein kinase C subspecies in staphylococcal enterotoxin B-induced thymocyte apoptosis. Biochem Biophys Res Commun 213:1132–1139, 1995.

    PubMed  CAS  Google Scholar 

  116. Seger R and Krebs EG: The MAPK cascade. FASEB J 9:726–735, 1995.

    PubMed  CAS  Google Scholar 

  117. Karin M: The regulation of AP-1 activity by mitogcn-activated protein kinases. J Biol Chem 270:16483–16486. 1995.

    PubMed  CAS  Google Scholar 

  118. Chen Y-R, Mever CF and Tan T-H: Persistent activation of c-Jun N-terminal kinase 1 (JNK.1) in g radiation-induced apoptosis. J Biol Chem 271:631–634, 1995.

    Google Scholar 

  119. Tang DG, Porter AT and Honn KV: Critical role of arachido-nate lipoxygenases in regulating apoptosis. In: Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury. (Eds: Honn KV, Nigam S, Jones R, Marnett LJ and Wong PY-K), Pleum Press, 1996, in press.

  120. Tang DG, Renaud C, Stojakovic S, et al. 12(S)-HETE is a mitogenic factor for microvascular endothelial cells: Its potential role in angiogenesis. Biochem Biophys Res Commun 211:462–468, 1995.

    PubMed  CAS  Google Scholar 

  121. Gorospe M and Holbrrok NJ: Role of p21 in prostaglandin A2-mediated cellular arrest and death. Cancer Res 56:475–479, 1996.

    PubMed  CAS  Google Scholar 

  122. Lu X, Xie W, Reed D, Bradshaw WS, et al. Nonsteroidal antiin-flammatory drugs cause apoptosis and induce cyclooxyge-nases in chicken embryo fibroblasts. Proc Natl Acad Sei USA 92:7961–7965, 1995.

    CAS  Google Scholar 

  123. Shiff SJ, Koutsos MI, Qiao L, et al. Nonsteroidal antiinflam-matory drugs inhibit the proliferation of colon adenocarcinoma cells: Effects on cell cycle and apoptosis. Exp Cell Res 222:179–188, 1996.

    PubMed  CAS  Google Scholar 

  124. Tsujii M and DuBois R: Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endopeorxide synthase 2. Cell 83:493–501, 1995.

    PubMed  CAS  Google Scholar 

  125. Boucher LM, Wiegmann K, Futterer A, et al. CD28 signals through acidic sphingomyelinase. J Exp Med 181:2059–2068, 1995.

    PubMed  CAS  Google Scholar 

  126. Base R, Verheij M, Haimovitz-Friedman A, et al. Ceramide synthase mediates daunorubicin-induced apoptosis: An alternative mechanism for generating death signals. Cell 82:405–414, 1995.

    Google Scholar 

  127. Jayadev S, Liu B, Bielawska AE, et al. Role for ceramide in cell cycle arrest. J Biol Chem 270:2047–2052, 1995.

    PubMed  CAS  Google Scholar 

  128. Dbaibo GS, Pushkareva MY, Jayadev S, et al. Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest. Proc Natl Acad Sei USA 92:1347–1351, 1995.

    CAS  Google Scholar 

  129. Chen M, Quintans J, Fuks Z, et al. Suppression of Bcl-2 messenger RNA production may mediate apoptosis after ionizing radiation, tumor necrosis factor-a, and ceramide. Cancer Res 55:991–994, 1995.

    PubMed  CAS  Google Scholar 

  130. Yao B, Zhang Y, Delikat S, et al. Phosphorylation of Raf by ceramide-activated protein kinase. Nature 378:307–310, 1995.

    PubMed  CAS  Google Scholar 

  131. Westwick JK, Bielawska AE, Dbaibo G, et al. Ceramide activates the stress-activated protein kinases. J Biol Chem 270:22689–22692, 1995.

    PubMed  CAS  Google Scholar 

  132. Muller G, Ayoub M, Stortz P, et al. PKC ζ is a molecular swtich in signal transduction of TNF-α, bifunctionally regu lated by ceramide and arachidonic acid. EM BO J 14:1961–1969, 1995.

    CAS  Google Scholar 

  133. Ji L, Zhang G and Hirabayashi Y: Yumor necrosis factor a increases tyrosine phosphorylation of a 23-kDa nuclaer protein in U937 cells through ceramide signaling pathway. Biochem Biophys Res Commun 215:489–496, 1995.

    PubMed  CAS  Google Scholar 

  134. Shimizu T, O’Connor FM, Kohn KW, et al. Unscheduled activation of cyclin Bl/Cdc2 kinase in human promeylocytic leukemia cell line HL60 cells undergoing apoptosis induced by DNA damage. Cancer Res 55:228–231, 1995.

    PubMed  CAS  Google Scholar 

  135. Martin SJ, McGahon AJ, Nishioka WK, et al. p34ede2 and apoptosis. Science 269:106–107, 1995.

    PubMed  CAS  Google Scholar 

  136. Kornada Y, Zhou Y-W, Zhang X-L, et al. Fas receptor (CD95)-mediated apoptosis in induced in leukemic cells entering GIB compartment of the cell cycle. Blood 86:3848–3860, 1995.

    Google Scholar 

  137. Kolesnitchenko V, Wahl LM, Tian H, et al. Human immunodeficiency virus 1 envelope-initiated G2-phase programmed cell death. Proc Natl Acad Sei USA 92:11889–1 1893, 1995.

    CAS  Google Scholar 

  138. Han Z, Chatterjee D, He DM, et al. Evidence for a G2 check-point in p53-independent apoptosis induction by X-irradiation. Mol Cell Biol 15:5849–5857, 1995.

    PubMed  CAS  Google Scholar 

  139. Lin Y and Benchimol S: Cytokines inhibit p53-mediated apoptosis but not p53-mediated G, arrest. Mol Cell Biol 15:6045–6054, 1995.

    PubMed  CAS  Google Scholar 

  140. Shan B, Durfee T and Lee W-H: Disruption of RB/E2F-1 interaction by single point mutations enhances S-phase entry and apoptosis. Proc Natl Acad Sei USA 93:679–684, 1996.

    CAS  Google Scholar 

  141. Goldstone SD, Fraggonas J-C, Jeitner TM, et al. Transcription factors as targets for oxidative signalling during lymphocyte activation. Biochim Biophys Acta 1263:114–122, 1995.

    PubMed  Google Scholar 

  142. Lander HM, Ogiste JS, Teng KK, et al. p21ras as a common signaling target of reactive free radicals and cellular redox stress. J Biol Chem 270:21195–21198, 1995.

    PubMed  CAS  Google Scholar 

  143. Sundaresan M, Yu Z-X, Ferraris VJ, et al. Requirement of generation of H2O, for platelet-derived growth factor-signal transduction. Science 270:296–299, 1995.

    PubMed  CAS  Google Scholar 

  144. Thannickal VJ and Fanburg BL: Activation of an H2O2-gener-ating NADH oxidase in human lung fibroblsts by transforming growth factor bl. J Biol Chem 270:30334–30338, 1995.

    PubMed  CAS  Google Scholar 

  145. Chen Q, Olashaw N and Wu J: Participation of reactive oxygen species in the lysophophatidic acid-stimulated mitogen-activated protein kinase kinase activation pathway. J Biol Chem 270:28499–28502, 1995.

    PubMed  CAS  Google Scholar 

  146. Dransfield I, Stocks SC and Haslett C: Regulation of adhesion molecule expression and function associated with neutrophil apoptosis. Blood 85:3264–3273, 1995.

    PubMed  CAS  Google Scholar 

  147. Lee S-H, Fujita N, Imai K, et al. Cysteine produced from lymph node stromal cells suppresses apoptosis of mouse malignant T-lymphoma cells. Biochem Biophys Res Commun 213:837–844, 1995.

    PubMed  CAS  Google Scholar 

  148. Merville P, Dechanet J, Desmouliere A, et al. Bcl-2+ tonsillar plasma cells are rescued from apoptosis by bone marrow fibroblasts. J Exp Med 183:227–236, 1996.

    PubMed  CAS  Google Scholar 

  149. Nakayama K, Nakayama K, Dustin LB, et al T-B cell interaction inhibits spontaneous apoptosis of mature lymphocytes in Bcl-2-deficient mice. J Exp Med 182:1101–1110, 1995.

    PubMed  CAS  Google Scholar 

  150. Ayroldi, E, Cannarile L, Migliorati G, et al. CD44 (Pgp-1) inhibits CD3 and dexamethasone-induced apoptosis. Blood 86:2672–2678, 1995.

    PubMed  CAS  Google Scholar 

  151. Sachsenmeier KF, Sheibani N, Schlosser SJ, et al. Transforming growth factor-ß1 inhibits nucleosomal fragmentation in human keratinocytes following loss of adhesion. J Biol Chem 271:5–8, 1996.

    PubMed  CAS  Google Scholar 

  152. Anzai N, Kuwahata H, Hirania T, et al. Types of nuclear endo-nuclease activity capable of inducing internucleosomal DNA fragmentation are completely different between human CD3-T cells and their granulocytic descendants. Blood 86:917–923. 1995.

    PubMed  CAS  Google Scholar 

  153. Veda N, Walker PD, Hsu S-M, et al: Activation of a 15-kDa endonuclease in hypoxia/reoxgenation injury without morphologic features of apoptosis. Proc Natl Acad Sei USA 92:7202–7206, 1995.

    Google Scholar 

  154. Kumar S: ICE-like proteases in apoptosis. TIBS 20:198–202, 1995.

    PubMed  CAS  Google Scholar 

  155. Munday NA, Vaillanvourt JP, Ali A, el al: Molecular cloning and pro-apoptotic activity of ICErelll and ICEreIIII. members of the ICE/CED-3 family of cysteine proteases. J Biol Chem 270:15870–15876, 1995.

    PubMed  CAS  Google Scholar 

  156. Fernaiiclez-Alnemri T, LitwackG and Alnemri ES: Mehl, a new member of the apoptotic Ced/lce cysteine protease gene family. Cancer Res 55:2737–2742, 1995.

    Google Scholar 

  157. Miitra M, Friedlander RM and YuanJ: Tumor necrosis factor-induced apoptosis is mediated by a Crm-Asensitive cell death pathway. Proc Natl Acad Sei USA 92:8318–8322, 1995.

    Google Scholar 

  158. Enari M, HugH and NagataS: Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 375:78–80, 1995.

    PubMed  CAS  Google Scholar 

  159. Darmon AJ, Nicholson DW and Bleackley RC: Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 377:446–448. 1995.

    PubMed  CAS  Google Scholar 

  160. Beidler DR, Tewari M, Friesen PD, et al: The baculovirus p35 protein inhibits Fas- and tumor necrosis factor-induced apop- tosis. J Biol Chem 270:16526–16528. 1995.

    PubMed  CAS  Google Scholar 

  161. Martin SJ, O’Brien GA, Nishioka WK, et al. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J Biol Chem 270:6425–6428, 1995.

    PubMed  CAS  Google Scholar 

  162. Mashima T, Naito M, EujitaN, et al. Identification of act in as a substrate of ICE and an ICE-like protease and involvement of an ICE-like protease but not ICE in VP-16-induced U937 apoptosis. Biochem Biophys Res Commun 217:1 185–1 192, 1995.

    CAS  Google Scholar 

  163. Brancolini C, BenedettiM and SchneiderC: Microfilament reorganization during apoptosis: the role of Gas2, a possible substrate for ICE-like proteases. EMBO J 14:5179–5190, 1995.

    PubMed  CAS  Google Scholar 

  164. Wang X, Pai J, Wiedenjeld FA, Medina JC, et al. Purification of an interleukin-lb converting enzyme-related cysteine protease that cleaves sterol regulatory element-binding proteins between the leucine zipper and transmembrane domains. J Biol Chem 270:18044–18050, 1995.

    PubMed  CAS  Google Scholar 

  165. Casciola-Rosen LA, Miller DK, Anhalt G.I, et al: Specific cleavage of the 70-kDa proetin component of the Ul small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death. J Biol Chem 270:30757–30760. 1995.

    Google Scholar 

  166. Gu Y SarneekiC, Aldape RA, et al. Cleavage of poly(ADP- ribose) polymerase by interleukin-lb converting enzyme and its homologs TX and Nedd-2. J Biol Chem 270:18715–18718, 1995.

    PubMed  CAS  Google Scholar 

  167. Lazehnik YA, Takahashi A, Moir RD, et al: Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc Natl Acad Sei USA 92:9042–9046. 1995.

    Google Scholar 

  168. Casciola-Rosen LA, Anhalt GJ, andRosenA: DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J Exp Med 182:1625–1643. 1995.

    PubMed  CAS  Google Scholar 

  169. Einoto Y, Manome Y, MeinhardtG, et al. Proteolytic activation of protein kinase C 8 by an ICE-like protease in apoptotic cells. EMBO J 14:6148–6156, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean G Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

G Tang, D., T Porter, A. Apoptosis: A current molecular analysis. Pathol. Oncol. Res. 2, 117–131 (1996). https://doi.org/10.1007/BF02903515

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02903515

keywords

Navigation