Skip to main content

Advertisement

Log in

JNK and AP-1 mediate apoptosis induced by bortezomib in HepG2 cells via FasL/caspase-8 and mitochondria-dependent pathways

  • Reports
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The proteasome inhibitor bortezomib is an efficacious apoptotic agent in many tumor cells. This paper shows that bortezomib induced apoptosis in human hepatoma HepG2 cells associated with many modifications in the expression of survival or death factors. Although bortezomib increased the level of the protective factors HSP70 and HSP27, the effects of the drug that favour cell death were predominant. These events include accumulation of c-Jun, phospho-c-Jun and p53; increase in FasL level with activation of caspase-8; changes related to members of Bcl-2 family with increase in the level of pro-apoptotic members and decrease in that of anti-apoptotic ones; dissipation of mitochondrial potential with cytochrome c release and activation of caspase-3. In contrast, Chang liver cells exhibited a very low susceptibility to bortezomib-induced apoptosis, which was accompanied by modest modifications in the expression of apoptotic factors.

In HepG2 cells bortezomib markedly increased AP-1 activity and the expression of its transcriptional targets such as c-Jun, FasL, BimEL, which are involved in apoptosis. Moreover, AP-1 induced its own production by increasing c-Jun content in the composition of the same AP-1 complex. In addition, bortezomib caused activation of JNK1, which in turn increased the level of phospho-c-Jun as well as stimulated the activation of caspase-3 and t-Bid, two fundamental apoptotic factors. Interestingly, siRNA silencing of c-Jun or JNK1 reduced HepG2 cell susceptibility to apoptosis and prevented the increase in AP-1 activity. Both JNK-1 and AP-1 thus exerted a crucial role in bortezomib-induced apoptosis. Differently, in Chang liver cells the different composition of AP-1 complex as well as the failure of JNK activation seemed to be responsible for the low susceptibility to apoptosis. Given the high susceptibility of hepatoma cells to bortezomib, our results suggest the potential application of this compound in clinical trials for liver cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell 2004; 5: 417–421.

    Article  PubMed  CAS  Google Scholar 

  2. Adams J. The proteasome: A suitable antineoplastic target. Nat Rev Cancer 2004; 4: 349–360.

    Article  PubMed  CAS  Google Scholar 

  3. Zhang HG, Wang J, Yang X, Hsu HC, Mountz JD. Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 2004; 15: 2009–2015.

    Article  CAS  Google Scholar 

  4. Wang QE, Wani MA, Chen J, et al. Cellular ubiquitination and proteasomal functions positively modulate mammalian nucleotide excision repair. Mol Carcinog 2005; 16: 53–64.

    Article  CAS  Google Scholar 

  5. Lauricella M, D’Anneo A, Giuliano M, et al. Induction of apoptosis in human osteosarcoma Saos-2 cells by the proteasome inhibitor MG132 and the protective effect of pRb. Cell Death Differ 2003; 10: 930–932.

    Article  PubMed  CAS  Google Scholar 

  6. Giuliano M, Lauricella M, Calvaruso G, et al. The apoptotic effects and synergistic interaction of sodium butyrate and MG132 in human retinoblastoma Y79 cells. Cancer Res 1999; 59: 5586–5595.

    PubMed  CAS  Google Scholar 

  7. Adams J, Kauffman M. Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Invest 2004; 22: 304–311.

    Article  PubMed  CAS  Google Scholar 

  8. Orlowski RZ. Bortezomib and its role in the management of patients with multiple myeloma. Expert Rev Anticancer Ther 2004; 4: 171–179.

    Article  PubMed  CAS  Google Scholar 

  9. Chauhan D, Li G, Podar K, et al. Targeting mitochondria to overcome conventional and bortezomib/proteasome inhibitor PS-341 resistance in multiple myeloma (MM) cells. Blood 2004; 15: 2458–2466.

    Article  CAS  Google Scholar 

  10. Mitsiades N, Mitsiades CS, Poulaki V, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 2002; 99: 14374–14379.

    Article  PubMed  CAS  Google Scholar 

  11. Pei XY, Dai Y, Grant S. The proteasome inhibitor bortezomib promotes mitochondrial injury and apoptosis induced by the small molecule Bcl-2 inhibitor HA14-1 in multiple myeloma cells. Leukemia 2003; 17: 2036–2045.

    Article  PubMed  CAS  Google Scholar 

  12. Dai Y, Rahmani M, Grant S. Proteasome inhibitors potentiate leukemic cell apoptosis induced by the cyclin-dependent kinase inhibitor flavopiridol through a SAPK/JNK- and NF-kappaB-dependent process. Oncogene 2003; 22: 7108–7122.

    Article  PubMed  CAS  Google Scholar 

  13. Papandreou CN, Logothetis CJ. Bortezomib as a potential treatment for prostate cancer. Cancer Res 2004; 64: 5036–5043.

    Article  PubMed  CAS  Google Scholar 

  14. Bunn PA Jr. The potential role of proteasome inhibitors in the treatment of lung cancer. Clin Cancer Res 2004; 10: 4263–4265.

    Article  Google Scholar 

  15. Yu J, Tiwari S, Steiner P, Zhang L. Differential apoptotic response to the proteasome inhibitor Bortezomib [VELCADE, PS–341] in Bax-deficient and p21-deficient colon cancer cells. Cancer Biol Ther 2003; 2: 694–699.

    PubMed  CAS  Google Scholar 

  16. Kamat AM, Karashima T, Davis DW, et al. The proteasome inhibitor bortezomib synergizes with gemcitabine to block the growth of human 253JB-V bladder tumors in vivo. Mol Cancer Ther 2004; 3: 279–290.

    PubMed  CAS  Google Scholar 

  17. Dai Y, Rahmani M, Pei XY, et al. Bortezomib and flavopiridol interact synergistically to induce apoptosis in chronic myeloid leukemia cells resistant to imatinib mesylate through both Bcr/Abl-dependent and- independent mechanisms. Blood 2004; 104: 509–518.

    Article  PubMed  CAS  Google Scholar 

  18. Cortes J, Thomas D, Koller C, et al. Phase I study of bortezomib in refractory or relapsed acute leukemias. Clin Cancer Res 2004; 10: 3371–3376.

    Article  PubMed  CAS  Google Scholar 

  19. Papandreou CN, Daliani DD, Nix D, et al. Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol 2004; 1: 2108–2121.

    Article  CAS  Google Scholar 

  20. Kondagunta GV, Drucker B, Schwartz L, et al. Phase II trial of bortezomib for patients with advanced renal cell carcinoma. J Clin Oncol 2004; 15: 3720–3725.

    Article  CAS  Google Scholar 

  21. Bruix J, Boix L, Sala M, Llovet JM. Focus on hepatocellular carcinoma. Cancer Cell 2004; 5: 215–219.

    Article  PubMed  CAS  Google Scholar 

  22. Emanuele S, Calvaruso G, Lauricella, et al. Apoptosis induced in hepatoblastoma HepG2 cells by the proteasome inhibitor MG132 is associated with hydrogen peroxide production, expression of.Bcl-XS and activation of caspase-3. Int J Oncol 2002; 21: 857–865.

    PubMed  CAS  Google Scholar 

  23. Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 1989; 119: 203–210.

    Article  PubMed  CAS  Google Scholar 

  24. Bojarski C, Bitter AH, Bendfeldt K, et al. Permeability of human HT-29/B6 colonic epithelium as a function of apoptosis. J Physiol 2001; 535: 541–552.

    Article  PubMed  CAS  Google Scholar 

  25. Darzynkiewicz Z, Bruno S, Del Bino G, et al. Features of apoptotic cells measured by flow cytometry. Cytometry 1992; 13: 795–808.

    Article  PubMed  CAS  Google Scholar 

  26. Lauricella M, Calvaruso G, Carabillo M, et al. pRb suppresses camptothecin-induced apoptosis in human osteosarcoma Saos-2 cells by inhibiting c-Jun N-terminal kinase. FEBS Lett 2001; 499: 191–197.

    Article  PubMed  CAS  Google Scholar 

  27. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156–159.

    Article  PubMed  CAS  Google Scholar 

  28. Emanuele S, D’Anneo A, Bellavia G, et al. Sodium butyrate induces apoptosis in human hepatoma cells by a mitochondria/caspase pathway, associated with degradation of beta-catenin, pRb and Bcl-XL. Eur J Cancer 2004; 40: 1441–1452.

    Article  PubMed  CAS  Google Scholar 

  29. Schreiber E, Matthias P, Muller MM, Schaffner W. Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res 1989; 17: 6419.

    PubMed  CAS  Google Scholar 

  30. Ling Y-H, Liebes L, Jiang J-D, Holland JF, et al. Mechanisms of proteasome inhibitor PS-341-induced G(2)-M-phase arrest and apoptosis in human non-small cell lung cancer cell lines. Clin Cancer Res 2003; 9: 1145–1154.

    PubMed  CAS  Google Scholar 

  31. Xiao D, Johnson CS, Trump DL, Singh SV. Proteasome-mediated degradation of cell division cycle 25C and cyclin-dependent kinase 1 in phenethyl isothiocyanate-induced G2-M-phase cell cycle arrest in PC-3 human prostate cancer cells. Mol Cancer Ther 2004; 3: 567–575.

    PubMed  CAS  Google Scholar 

  32. Huang T-S, Lee S-C, Lin J-K. Suppression of c-Jun/AP-1 activation by an inhibitor of tumor promotion in mouse fibroblast cells. Proc Natl Acad Sci 1991; 88: 5292–5296.

    Article  PubMed  CAS  Google Scholar 

  33. Hartl M, Bader AG, Bister K. Molecular targets of the oncogenic transcription factor jun. Curr Cancer Drug Targets 2003; 3: 41–55.

    Article  PubMed  CAS  Google Scholar 

  34. Lin A, Dibling B. The true face of JNK activation in apoptosis. Aging Cell 2002; 1: 112–116.

    Article  PubMed  CAS  Google Scholar 

  35. Freeman SM, Whartenby KA. The role of the mitogen-activated protein kinase cellular signaling pathway in tumor cell survival and apoptosis. Drug News Perspect 2004; 17: 237–242.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang Y, Chen F. Reactive oxygen species (ROS), troublemakers between nuclear factor-kappaB (NF-kappaB) and c-Jun NH(2)-terminal kinase (JNK). Cancer Res 2004; 64: 1902–1905.

    Article  PubMed  CAS  Google Scholar 

  37. Mosser DD, Morimoto RI. Molecular chaperones and the stress of oncogenesis. Oncogene 2004; 23: 2907–2918.

    Article  PubMed  CAS  Google Scholar 

  38. Merienne K, Helmlinger D, Perkin GR, Devys D, Trottier Y. Polyglutamine expansion induces a protein-damaging stress connecting heat shock protein 70 to the JNK pathway. J Biol Chem 2003; 278: 16957–16967.

    Article  PubMed  CAS  Google Scholar 

  39. Wang JH, Yao MZ, Zhang ZL, Zhang YH, Wang YG, Liu XY. HSF1 blockade-induced tumor thermotolerance abolishment is mediated by JNK-dependent caspase-3 activation. Biochem Biophys Res Commun 2004; 321: 736–745.

    Article  PubMed  CAS  Google Scholar 

  40. Thorburn A. Death receptor-induced cell killing. Cell Signal 2004; 16: 139–144.

    Article  PubMed  CAS  Google Scholar 

  41. Wang S, El-Deiry WS. The p53 pathway: targets for the development of novel cancer therapeutics. Cancer Treat Res 2004; 119: 175–187.

    Article  PubMed  CAS  Google Scholar 

  42. Weiss RH. p21Waf1/Cip1 as a therapeutic target in breast and other cancers. Cancer Cell 2003; 4: 425–429.

    Article  PubMed  CAS  Google Scholar 

  43. Fotouhi N, Graves B. Small molecule inhibitors of p53/MDM2 interaction. Curr Top Med Chem 2005; 5: 159–165.

    Article  PubMed  CAS  Google Scholar 

  44. Liu FT, Goff LK, Hao JH, et al. Increase in the ratio of mitochondrial Bax/Bcl-XL induces Bax activation in human leukemic K562 cell line. Apoptosis 2004; 9: 377–384.

    Article  PubMed  CAS  Google Scholar 

  45. Puthalakath H, Strasser A. Keeping killers on a tight leash: Transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 2002; 9: 505–512.

    Article  PubMed  CAS  Google Scholar 

  46. Tan TT, Degenhardt K, Nelson DA, et al. Key roles of BIM-driven apoptosis in epithelial tumors and rational chemotherapy. Cancer Cell 2005; 7: 227–238.

    Article  PubMed  CAS  Google Scholar 

  47. Tong X, Lin S, Fujii M, et al. Molecular mechanisms of echinocystic acid-induced apoptosis in HepG2 cells. Biochem Biophys Res Commun 2004; 321: 539–546.

    Article  PubMed  CAS  Google Scholar 

  48. Dong Z, Zhou L, Del Villar K, et al. JIP1 regulates neuronal apoptosis in response to stress. Mol Brain Res 2005; 134: 282–293.

    Article  PubMed  CAS  Google Scholar 

  49. Tsuboi H, Hossain K, Akhand AA, et al. Paeoniflorin induces apoptosis of lymphocytes through a redox-linked mechanism. J Cell Biochem 2004; 93: 162–72.

    Article  PubMed  CAS  Google Scholar 

  50. Jian YT, Mai GF, Wang JD, et al. Preventive and therapeutic effects of NF-kappaB inhibitor curcumin in rats colitis induced by trinitrobenzene sulfonic acid. World J Gastroenterol 2005; 11: 1747–52.

    PubMed  CAS  Google Scholar 

  51. Eferl R, Wagner EF. AP-1: A double-edged sword in tumorigenesis. Nat Rev Canc 2003; 3: 859–868.

    Article  CAS  Google Scholar 

  52. Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol 2002; 4: 131–136.

    Article  CAS  Google Scholar 

  53. Pyrzynska B, Mosieniak G, Kaminska B. Changes of the trans-activating potential of AP-1 transcription factor during cyclosporin A-induced apoptosis of glioma cells are mediated by phosphorylation and alterations of AP-1 composition. J Neurochem 2000; 74: 42–51.

    Article  PubMed  CAS  Google Scholar 

  54. Hahm ER, Gho YS, Park S, et al. Synthetic curcumin analogs inhibit activator protein-1 transcription and tumor-induced angiogenesis. Biochem Biophys Res Commun 2004; 321: 337–344.

    Article  PubMed  CAS  Google Scholar 

  55. Kang G, Kong PJ, Yuh YJ, et al. Curcumin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor kappab bindings in BV2 microglial cells. J Pharmacol Sci 2004; 94: 325–328.

    Article  PubMed  CAS  Google Scholar 

  56. Kaminska B, Pyrzynska B, Ciechomska I, et al. Modulation of the composition of AP-1 complex and its impact on transcriptional activity. Acta Neurobiol Exp 2000; 60: 395–402.

    CAS  Google Scholar 

  57. Li L, Feng Z, Porter AG. JNK-dependent phosphorylation of c-Jun on serine 63 mediates nitric oxide-induced apoptosis of neuroblastoma cells. J Biol Chem 2004; 279: 4058–4065.

    Article  PubMed  CAS  Google Scholar 

  58. Yin KJ, Lee JM, Chen SD, et al. Amyloid-beta induces Smac release via AP-1/Bim activation in cerebral endothelial cells. J Neurosci 2002; 22: 9764–9770.

    PubMed  CAS  Google Scholar 

  59. Eichhorst ST, Muller M, Li-Weber M, et al. A novel AP-1 element in the CD95 ligand promoter is required for induction of apoptosis in hepatocellular carcinoma cells upon treatment with anticancer drugs. Mol Cell Biol 2000; 20: 7826–7837.

    Article  PubMed  CAS  Google Scholar 

  60. Hosokawa N, Takechi H, Yokota S, et al. Structure of the gene encoding the mouse 47-kDa heat-shock protein (HSP47). Gene 1993; 126: 187–193.

    Article  PubMed  CAS  Google Scholar 

  61. Houston A, O’Connell J. The Fas signalling pathway and its role in the pathogenesis of cancer. Curr Opin Pharmacol 2004; 4: 321–326.

    Article  PubMed  CAS  Google Scholar 

  62. Gomez-Bougie P, Bataille R, Amiot M. Endogenous association of Bim BH3-only protein with Mcl-1, Bcl-xL and Bcl-2 on mitochondria in human B cells. Eur J Immunol 2005; 35: 971–976.

    Article  PubMed  CAS  Google Scholar 

  63. Kuwana T, Bouchier-Hayes L, Chipuk JE, et al. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 2005; 7: 525–535.

    Article  CAS  Google Scholar 

  64. Wu Y, Mehew JW, Heckman CA, et al. Negative regulation of bcl-2 expression by p53 in hematopoietic cells. Oncogene 2001; 20: 240–251.

    Article  PubMed  CAS  Google Scholar 

  65. Zamzami N, El Hamel C, Maisse C, et al. Bid acts on the permeability transition pore complex to induce apoptosis. Oncogene 2000; 19: 6342–6350.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Tesoriere.

Additional information

Both authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauricella, M., Emanuele, S., D’Anneo, A. et al. JNK and AP-1 mediate apoptosis induced by bortezomib in HepG2 cells via FasL/caspase-8 and mitochondria-dependent pathways. Apoptosis 11, 607–625 (2006). https://doi.org/10.1007/s10495-006-4689-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-4689-y

Keywords

Navigation